www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Normierte Vektorräume
Normierte Vektorräume < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normierte Vektorräume: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:50 Fr 29.04.2005
Autor: Esra

Hi

Sei V ein mormierter Vektorraum, und sei v ein Vektor mit  [mm] \parallel [/mm] v [mm] \parallel [/mm] < 1. Zeigen sie : Die Abbildung
V [mm] \to [/mm] V, x [mm] \mapsto [/mm] x + [mm] \parallel [/mm] x [mm] \parallel [/mm] v
ist bijektiv
ich weiß dass ich bie surjektivitat und injektivität zeigen  muss
aber nicht weiss wie ich es machen muss
hoffe einer kann mir weiter helfen
DANKE
:-)

        
Bezug
Normierte Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Sa 30.04.2005
Autor: Stefan

Hallo Esra!

Ich zeige schon einmal die Injektivität:

Aus

[mm] $x+\Vert [/mm] x [mm] \Vert [/mm] v = y + [mm] \Vert [/mm] y [mm] \Vert [/mm] v$

folgt:

$x-y = [mm] (\Vert [/mm] y [mm] \Vert [/mm] - [mm] \Vert [/mm] x [mm] \Vert)v$, [/mm]

also im Falle [mm] $\Vert [/mm] x - y [mm] \Vert>0$: [/mm]

[mm] $\Vert [/mm] x - y [mm] \Vert [/mm] = [mm] |\Vert [/mm] y [mm] \Vert [/mm] - [mm] \Vert [/mm] x [mm] \Vert| \cdot \Vert [/mm] v [mm] \Vert [/mm] < [mm] |\Vert [/mm] y [mm] \Vert [/mm] - [mm] \Vert [/mm] x [mm] \Vert| \le \Vert [/mm] x - [mm] y\Vert$, [/mm]

wobei im letzten Schritt die umgekehrte Dreiecksungleichung angewendet wurde. Diese Ungleichung stellt einen Widerspruch dar.

Also muss [mm] $\Vert [/mm] x-y [mm] \Vert=0$ [/mm] gelten und somit $x=y$.

Viele Grüße
Stefan



Bezug
        
Bezug
Normierte Vektorräume: Surjektivität
Status: (Frage) beantwortet Status 
Datum: 19:04 Sa 30.04.2005
Autor: Domi81

Wie kann ich denn die Surjektivität überprüfen? Muss ich eine Fallunterscheidung machen für x>0 und x<0 wenn ich den Fall für  IR beschränke?


Bezug
                
Bezug
Normierte Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Sa 30.04.2005
Autor: Max

Hallo Domi,

dir ein herzliches
[willkommenmr]

> Wie kann ich denn die Surjektivität überprüfen? Muss ich
> eine Fallunterscheidung machen für x>0 und x<0 wenn ich den
> Fall für  IR beschränke?

Da es sich bei [mm] $x\in [/mm] V$ um einen Vektor handelt, weiß ich nicht was du mit $x>0$ bzw. $x<0$ meinst? Oder meintest du [mm] $V=\IR$? [/mm] Aber das ist ja nicht in der Aufgabenstellung vorgegeben.

Surjekiv: Eine Funktion $f: V [mm] \to [/mm] V$ heißt surjektiv, wenn  [mm] $\forall y\in [/mm] V  [mm] \exists [/mm] x [mm] \in [/mm] V: f(x)=y$.

Jetzt musst du begründen, warum dies der Fall ist.

Gruß Max





Bezug
                        
Bezug
Normierte Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Sa 30.04.2005
Autor: Domi81

Ich danke dir, Max. Ich meinte mit x eigentlich einen Vektor aus IR. Ich danke Dir für deine Antwort. War ein wenig verwirrt. Vielleicht hast Du ja einen Tipp zur Aufgabe mit dem Beschränkten Vektorraum  unter "Beschränktheit". Grüße aus der schwarz-gelben Metropole...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de