www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Normiertes Polynom gesucht
Normiertes Polynom gesucht < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normiertes Polynom gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Fr 01.06.2012
Autor: phychem

Hallo


Es sei V ein n-dimensionaler K-Vektorraum und man betrachte für einen beliebigen Endomorphismus F [mm] \in [/mm] End(V) den folgenden Algebrenhomomorphismus zwischen der Algebra der Polynome über K und der Endomorphismenalgebra von V:

K[X] [mm] \to [/mm] End(V)   ,   [mm] p=\summe_{n}p_{n}X^{n} \mapsto p(F):=\summe_{n}p_{n}F^{n} [/mm]


Nun soll ich zeigen, dass es ein normiertes Polynom p [mm] \in [/mm] K[X] mit p(F)=0 und Grad(p) [mm] \le n^{2} [/mm] gibt (0 steht für die Nullabbildung).
Dieser Beweis sollte eigentlich ziemlich trivial sein, nur gelingt er mir gerade einfach nicht.
Ich weiss, dass [mm] dim(K[X])=\infty [/mm] ist, und wenn ich mich nicht irre, gilt [mm] dim(End(V))=n^{2}. [/mm] Aber wie schliess ich nun auf die Existenz eines solchen normierten Polynoms?
In der Aufgabenstellung wird noch darauf hingewiesen, dass man die Endomorphismen id, F, [mm] F^{2},...,F^{n^{2}} [/mm] betrachten soll.
Leider konnte ich mit diesem Hinweis nicht allzuviel anfangen.

        
Bezug
Normiertes Polynom gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Fr 01.06.2012
Autor: Schadowmaster

moin,

Du hast hier mit den Potenzen von $F$ genau [mm] $n^2+1$ [/mm] Elemente deines Vektorraums, also mehr als der Vektorraum Dimension hat.
Das heißt diese sind linear abhängig.
Wie kannst du das verwenden, um das gesuchte Polynom zu finden?

lg

Schadowmaster

Bezug
                
Bezug
Normiertes Polynom gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Fr 01.06.2012
Autor: phychem

Achso, d.h. die Nullabbildung lässt sich als eine nicht-triviale Linearkombination der Endomorphismen id, F, [mm] F^{2}, [/mm] ..., [mm] F^{n^{n}} [/mm] schreiben:

0 = [mm] k_{0}id [/mm] + [mm] k_{1}F [/mm] + [mm] k_{2}F^{2} [/mm] + ... + [mm] k_{n^{2}}F^{n^{2}} [/mm]

mit

[mm] \exists [/mm] i [mm] \in \{0,1,...,n^{2}\}: k_{i} \not= [/mm] 0

Indem ich nun beide Seiten mit dem Skalar [mm] 1/k_{m} [/mm] mit
m:= max{ i [mm] \in \{0,1,...,n^{2}\}: k_{i} \not= [/mm] 0}
multipliziere, erhalte ich das gesuchte normierte Polynom.

Richtig?

Bezug
                        
Bezug
Normiertes Polynom gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Fr 01.06.2012
Autor: Schadowmaster


> Achso, d.h. die Nullabbildung lässt sich als eine
> nicht-triviale Linearkombination der Endomorphismen id, F,
> [mm]F^{2},[/mm] ..., [mm]F^{n^{n}}[/mm] schreiben:
>  
> 0 = [mm]k_{0}id[/mm] + [mm]k_{1}F[/mm] + [mm]k_{2}F^{2}[/mm] + ... +
> [mm]k_{n^{2}}F^{n^{2}}[/mm]
>  
> mit
>  
> [mm]\exists[/mm] i [mm]\in \{0,1,...,n^{2}\}: k_{i} \not=[/mm] 0
>  
> Indem ich nun beide Seiten mit dem Skalar [mm]1/k_{m}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

mit

>  m:= max{ i [mm]\in \{0,1,...,n^{2}\}: k_{i} \not=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0}

>  multipliziere, erhalte ich das gesuchte normierte
> Polynom.
>  
> Richtig?

ganz genau!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de