www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Normierung Normalverteilung
Normierung Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normierung Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Do 25.10.2012
Autor: Soonic


Hallo Mathe-Profis :-)

Ich möchte eine Gaußverteilung (Normalverteilung) auf 1 Normieren. Exakt bedeutet das, dass ich nach Angabe der Halbwertsbrete HWB, dem Mittelwert
[mm]\mu[/mm] die Normalverteilung mit der Amplitude 1 in Excel darstellen möchte.

Die Funktion für die Verteilung lautet ja so:

p(x) = [mm]\bruch{1}{\sigma\wurzel{2\pi}}*e^{-\bruch{(x-\mu)^2}{2\sigma}}[/mm]

Sigma lässt sich ja auch der HBW berechnen

[mm]\sigma = \bruch{HWB}{2\wurzel{2*ln2}}[/mm]

Wie lautet nun meine Gleichung um die maximale Amplitude auf 1 zu bekommen?

Denn ich möchte später die Gleichung mit einer Konstanten multiplizieren, um die Amplitude zu verändern. Wenn meine Konstante beispielsweise 3000 ist, so soll dann auch die Amplitude des Verlaufs 3000 sein.


Wäre super, wenn mir da einer helfen könnte :-)

Vielen Dank

soonic


        
Bezug
Normierung Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Do 25.10.2012
Autor: MathePower

Hallo Soonic,

>
> Hallo Mathe-Profis :-)
>  
> Ich möchte eine Gaußverteilung (Normalverteilung) auf 1
> Normieren. Exakt bedeutet das, dass ich nach Angabe der
> Halbwertsbrete HWB, dem Mittelwert
> [mm]\mu[/mm] die Normalverteilung mit der Amplitude 1 in Excel
> darstellen möchte.
>  
> Die Funktion für die Verteilung lautet ja so:
>  
> p(x) =
> [mm]\bruch{1}{\sigma\wurzel{2\pi}}*e^{-\bruch{(x-\mu)^2}{2\sigma}}[/mm]
>  
> Sigma lässt sich ja auch der HBW berechnen
>  
> [mm]\sigma = \bruch{HWB}{2\wurzel{2*ln2}}[/mm]
>  
> Wie lautet nun meine Gleichung um die maximale Amplitude
> auf 1 zu bekommen?
>  


Dividiere [mm]p\left(x\right)[/mm] durch [mm]p\left(\mu\right)[/mm].

Dann hast Du eine neue Funktion:

[mm]\tilde{p}\left(x\right)=\bruch{1}{p\left(\mu\right)}*p\left(x\right)[/mm]


> Denn ich möchte später die Gleichung mit einer Konstanten
> multiplizieren, um die Amplitude zu verändern. Wenn meine
> Konstante beispielsweise 3000 ist, so soll dann auch die
> Amplitude des Verlaufs 3000 sein.
>
>
> Wäre super, wenn mir da einer helfen könnte :-)
>  
> Vielen Dank
>  
> soonic
>  


Gruss
MathePower

Bezug
                
Bezug
Normierung Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 So 28.10.2012
Autor: Soonic


Hi, vielen Dank für die Antwort. Jo, das stimmt. Wenn ich durch den Wert der 'Amplitude' teile, bekomme ich '1' heraus :-)

Jetzt mal eine ganz blöde Frage: Wie sieht denn [mm] p(\mu) [/mm] formeltechnisch aus?

In Excel würde ich jafür p(x) = $ [mm] \bruch{1}{\sigma\wurzel{2\pi}}\cdot{}e^{-\bruch{(x-\mu)^2}{2\sigma}} [/mm] $. Das müsste ich ja dann durch den Amplitudenwert des Mittelwertes teilen. Für diesen bräuchte ich eben eine Formel, damit ich je nach Halbwertsbreite und Mittelwert meine Verteilung bekomme?

Sorry für die Frage, aber ich habe gerade echt nen Brett vorm Kopf :-(



Bezug
                        
Bezug
Normierung Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 So 28.10.2012
Autor: MathePower

Hallo Soonic,

>
> Hi, vielen Dank für die Antwort. Jo, das stimmt. Wenn ich
> durch den Wert der 'Amplitude' teile, bekomme ich '1'
> heraus :-)
>  
> Jetzt mal eine ganz blöde Frage: Wie sieht denn [mm]p(\mu)[/mm]
> formeltechnisch aus?
>  
> In Excel würde ich jafür p(x) =
> [mm]\bruch{1}{\sigma\wurzel{2\pi}}\cdot{}e^{-\bruch{(x-\mu)^2}{2\sigma}} [/mm].
> Das müsste ich ja dann durch den Amplitudenwert des
> Mittelwertes teilen. Für diesen bräuchte ich eben eine
> Formel, damit ich je nach Halbwertsbreite und Mittelwert
> meine Verteilung bekomme?
>


Setze den Wert [mm]\mu[/mm] in die Formel für [mm]p\left(x\right)[/mm] ein:

[mm]p\left(\mu\right)=\bruch{1}{\sigma\wurzel{2\pi}}\cdot{}e^{-\bruch{(\mu-\mu)^2}{2\sigma}} =\bruch{1}{\sigma\wurzel{2\pi}}[/mm]


> Sorry für die Frage, aber ich habe gerade echt nen Brett
> vorm Kopf :-(
>  

  

Gruss
MathePower

Bezug
                                
Bezug
Normierung Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 So 28.10.2012
Autor: Soonic


Das läuft doch dann darauf hinaus, dass das neue p(x) auf 1 normiert dann nur noch [mm] e^{-\bruch{(x-\mu)^2}{2\sigma}}. [/mm] Oder?


Bezug
                                        
Bezug
Normierung Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 So 28.10.2012
Autor: MathePower

Hallo Soonic,

>
> Das läuft doch dann darauf hinaus, dass das neue p(x) auf
> 1 normiert dann nur noch [mm]e^{-\bruch{(x-\mu)^2}{2\sigma}}.[/mm]
> Oder?
>  


Ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de