www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Normierung einer Gaussverteil.
Normierung einer Gaussverteil. < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normierung einer Gaussverteil.: Stammfunktion
Status: (Frage) beantwortet Status 
Datum: 10:46 Fr 29.04.2005
Autor: Kimberly

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich brauche die Stammfunktion. Für das Integral

[mm] X^2 [/mm] e^bx dx = e^bx [mm] ((x^2/b) -(2x/b^2)+(2/b^3)) [/mm]

habe ich die Formel schon. Nun bräucht ich so eine Formel für das

Integral [mm] (x^4 [/mm] e^bx dx)= ???

Wäre super wenn ihr mir helfen könntet.Vielen Dank im Voraus Kim

        
Bezug
Normierung einer Gaussverteil.: Partielle Integration
Status: (Antwort) fertig Status 
Datum: 15:26 Fr 29.04.2005
Autor: MathePower

Hallo Kimberly,

> Ich brauche die Stammfunktion. Für das Integral
>  
> [mm]X^2[/mm] e^bx dx = e^bx [mm]((x^2/b) -(2x/b^2)+(2/b^3))[/mm]
>  
> habe ich die Formel schon. Nun bräucht ich so eine Formel
> für das
>  
> Integral [mm](x^4[/mm] e^bx dx)= ???
>  

Die Stammfunktion auszurechnen, geht genauso wie oben.

Hinter partieller Integration steckt folgende Regel:

[mm]\int {u\;v'\;dx} \; = \;u\;v\; - \;\int {u'} \;v\;dx[/mm]

Hier bedeutet das:

Wähle zunächst:

[mm]\begin{gathered} u\; = \;x^4 \; \Rightarrow \;u'\; = \;4\;x^3 \hfill \\ v'\; = \;e^{bx} \; \Rightarrow \;v\; = \;\frac{1} {b}\;e^{bx} \hfill \\ \end{gathered}[/mm]

Dann gilt:

[mm]\int {x^{4} \;e^{bx} \;dx\; = \;} \frac{1} {b}\;x^{4} \;e^{bx} \; - \;\frac{4} {b}\;\int {x^{3} \;e^{bx} \;dx} [/mm]

Die partielle Integration muß dann mehrmals durchgeführt werden.

Gruß
MathePower


Bezug
        
Bezug
Normierung einer Gaussverteil.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Fr 29.04.2005
Autor: Kimberly

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also erst einmal vielen Dank für deine Antwort. Die allgemeine Formel kannte ich jedoch bereits, aber ich finde es sehr kompliziert, besonders bei sehr hohen Hochzahlen, die Integration z.b vier mal hinter einander durchzuführen. Für den Fall [mm] x^2 [/mm] und auch [mm] x^3 [/mm] habe ich schon fertig berechnete aber dennoch allgemeine Formeln gefunden. (siehe erste frage für [mm] x^2). [/mm] So eine Formel hätte ich gern auch für [mm] x^4, [/mm] dann könnte man sich sehr viel arbeit sparen.

Bezug
                
Bezug
Normierung einer Gaussverteil.: Bekanntes Ergebnis nutzen!
Status: (Antwort) fertig Status 
Datum: 20:53 Fr 29.04.2005
Autor: Loddar

Hallo Kimberley!



Wenn Du das Ergebnis für [mm] $\integral_{}^{} {x^2 * e^{b*x} \ dx}$ [/mm] bereits kennst, brauchst Du doch für die Funktion mit [mm] $x^4 [/mm] * [mm] e^{b*x}$ [/mm] "nur" zweimal die partielle Integration anwenden, da ja dann genau o.g. Integral auftreten wird (mit einem Faktor davor, der aber nicht weiter stört wegen der MBFaktorregel).

Und dieses Ergebnis kennst Du ja bereits und kannst es in die Formel für [mm] $x^4 [/mm] * [mm] e^{b*x}$ [/mm] einsetzen.


Gruß
Loddar


Bezug
                
Bezug
Normierung einer Gaussverteil.: Formel
Status: (Antwort) fertig Status 
Datum: 22:56 Fr 29.04.2005
Autor: MathePower

Hallo Kimberly,

> Also erst einmal vielen Dank für deine Antwort. Die
> allgemeine Formel kannte ich jedoch bereits, aber ich finde
> es sehr kompliziert, besonders bei sehr hohen Hochzahlen,
> die Integration z.b vier mal hinter einander durchzuführen.
> Für den Fall [mm]x^2[/mm] und auch [mm]x^3[/mm] habe ich schon fertig
> berechnete aber dennoch allgemeine Formeln gefunden. (siehe
> erste frage für [mm]x^2).[/mm] So eine Formel hätte ich gern auch
> für [mm]x^4,[/mm] dann könnte man sich sehr viel arbeit sparen.

ich hab mal so eine Formel:

[mm]\int {x^{n} \;e^{bx} \;dx\; = \;\sum\limits_{k = 0}^n {( - 1)^{k} \;\frac{{n!}} {{(n - k)!\;b^{k + 1} }}\;} } x^{n - k} \;e^{bx} [/mm]

Gruß
MathePower



Bezug
                        
Bezug
Normierung einer Gaussverteil.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Sa 30.04.2005
Autor: Kimberly

Also Loddar, ich weiss schon wie das geht und ich habe das ergebnis auch schon längst raus, indem ich sehr ätzend die Integration mehrmals hinter einander durchgeführt habe, aber ich versuche hier eine neue formel zu entwickeln.
Die allgemeine Formel lautet

[mm] \integral {x^n e^(b^x) dx}= (1/b)x^n e^b^x [/mm] -(n/b) [mm] \integral{x^(n^(-1) e^bx dx} [/mm]

Für [mm] x^2 [/mm] habe ich die Formel
[mm] \integral_{-\infty}^{+\infty} {x^2 e^b^x dx} [/mm] = [mm] {e^b^x ( (x^2/b) -(2x/b^2) + (2/b^3))} [/mm]

Für [mm] x^3 [/mm] habe ich:

[mm] \integral_{-\infty}^{+\infty} {x^3 e^b^x dx} [/mm] = [mm] {e^b^x (x^3/b) -(3x^2/b^2) + (6x/b^3)-(6/b^4))} [/mm]

Wie lautet nach diesem schema die formel für [mm] x^4 [/mm] ? Ps: hoffe ich habe nun alle formel richtig geschrieben.

Bezug
                                
Bezug
Normierung einer Gaussverteil.: Formel 2
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 30.04.2005
Autor: MathePower

Hallo Kimberly,

  

> Wie lautet nach diesem schema die formel für [mm]x^4[/mm] ? Ps:
> hoffe ich habe nun alle formel richtig geschrieben.

[mm]\int {x^{4} \;e^{bx} \;dx} \; = \;e^{bx} \;\left( {\frac{{x^{4} }} {b}\; - \;\frac{{4x^{3} }} {{b^{2} }}\; + \;\frac{{12x^{2} }} {{b^{3} }}\; - \;\frac{{24x}} {{b^{4} }}\; + \;\frac{{24}} {{b^{5} }}} \right)[/mm]

Gruß
MathePower


Bezug
                                        
Bezug
Normierung einer Gaussverteil.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Sa 30.04.2005
Autor: Kimberly

Oh man, das meinte ich! Diese Formel wird mir sehr sehr helfen, vielen Dank MathePower!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de