www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Nullfolgen
Nullfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Mo 29.05.2006
Autor: kuminitu

Aufgabe
Sind diese folgen Nullfolgen?
1) [mm] \wurzel{n+1}- \wurzel{n} [/mm]
2) [mm] \wurzel{(n+a)(n+b)}- \wurzel{n} [/mm] , für a,b [mm] \ge [/mm] 0 fest

3)
Es sei r > 0 und [mm] (a_{n}) [/mm] eine Nullfolge mit positiven Gliedern. Zeigen Sie, dass dann auch die durch [mm] b_{n} [/mm] := [mm] a_{n}^{r} [/mm]
gegebene Folge [mm] (b_{n}) [/mm] eine Nullfolge ist.

Hallo,

Ich weiss leider nicht genau, wie ich diese Aussagen beweisen kann. Bei Aufgabe 1) würde ich einfach argumentieren, dass
[mm] \limes_{n\rightarrow\infty} \wurzel{n+1}- \wurzel{n} [/mm] = 0 ist, da der Summand 1 in der ersten Wurzel für große n eigentlich völlig egal ist. Aber ich weiss grad nicht wie ich das formal aufschreiben sollte.

Bei 2) kommt nach meiner Rechnung der Grenzwert  [mm] \bruch{a+b}{2} [/mm] raus, damit dürfte es ja keine Nullfolge sein.

3)
Kann ich mir bei dieser Aufgabe einfach eine Nullfolge definieren?
Wenn ich mir jetzt  [mm] \bruch{1}{x} [/mm] nehme, weiss ich ja, dass es eine nullfolge ist. Wenn ich diese jetzt potenziere, so gilt ja [mm] \bruch{1}{x}>\bruch{1}{x^2}>\bruch{1}{x^3} [/mm] usw.
und somit wäre [mm] \bruch{1}{x} [/mm] eine Majorante und somit sind die anderen Folgen auch Nullfolgen.
Funktioniert dass so???

Hoffe ich hab wenigstens ein paar richtige ansätze, wenn nicht helft mir bitte.

MFG

Kuminitu

        
Bezug
Nullfolgen: erweitern + Definition
Status: (Antwort) fertig Status 
Datum: 10:53 Mo 29.05.2006
Autor: Loddar

Hallo Kuminitu!


Aufgabe 1:

Stichwort "3. binomische Formel": Erweitere den Ausdruck mit [mm] $\left( \ \wurzel{n+1} \ \red{+} \ \wurzel{n} \ \right)$ [/mm] und klammere anschließend den Term $n \ = \ [mm] \wurzel{n^2}$ [/mm] aus und kürze.


Aufgabe 2:

Vorgehensweise analog zu Aufgabe 1. Ich erhalte als "Grenzwert" allerdings $+ \ [mm] \infty$ [/mm] .


Aufgabe 3:

Verwende hier die Definition der Konvergenz:   [mm] $\limes_{n\rightarrow\infty}a_n [/mm] \ = \ a$     [mm] $\Rightarrow$ $\left| \ a_n-a \ \right| [/mm] \ < \ [mm] \varepsilon$ [/mm]

Hier also: [mm] $\limes_{n\rightarrow\infty}a_n [/mm] \ = \ 0$     [mm] $\Rightarrow$ $\left| \ a_n-0 \ \right| [/mm] \ = \ [mm] \left| \ a_n \ \right| [/mm] \ = \ [mm] a_n [/mm] \ < \ [mm] \varepsilon$ [/mm]


Analog für die Folge [mm] $b_n [/mm] \ := \  [mm] a_n^r$ [/mm] :

[mm] $\left| \ b_n-0 \ \right| [/mm] \ = \ [mm] \left| \ a_n^r \ \right| [/mm] \ = \ [mm] \left| \ a_n \ \right|^r [/mm] \ ...$

Nun also ein passendes [mm] $\varepsilon'$ [/mm] für [mm] $a_n$ [/mm] definieren/wählen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de