www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Nullmengen
Nullmengen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 15.01.2010
Autor: Bodo0686

Aufgabe
Zeigen Sie:
a) Eine Nullmenge hat keinen inneren Punkte
b) Eine stetige Funktion f auf [mm] \IR^n [/mm] mit [mm] ||f||_1=0 [/mm]

Hallo,

könnt ihr mir hier weiterhelfen?
Ich komme nicht so recht weiter!

zu a) Sei A [mm] \subseteq \IR^n. [/mm] A ist Nullmenge wenn [mm] \mu(A)=0 [/mm]

[mm] \mu(A)=\begin{cases} 1, & \mbox{für } x \in A \mbox{ } \\ 0, & \mbox{für } x\notin A \mbox{} \end{cases} [/mm]

Danke!

        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Fr 15.01.2010
Autor: gfm

Ich nehme mal an, dass der Kontext zu a) der [mm] \IR^{n} [/mm] mit dem LB-Maß [mm] \lambda [/mm] ist.

Zu jedem innerern Punkt gibt es eine ihn enthaltende Umgebung, die ganz in der Menge liegt. Im [mm] \IR^{n} [/mm] könnte man Bälle nehmen, welche ganz sicher ein von Null verschiedenes LB-Maß haben.

Bei b) fehlt mir was...

Bezug
                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Di 19.01.2010
Autor: Bodo0686

Hallo,

also ist a so korrekt?

Bei b) habe ich etwas vergessen... "ist die Nullfunktion"

Grüße

Bezug
                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Di 19.01.2010
Autor: XPatrickX

Hallo,

nehme für b) an es wäre nicht die Nullfunktion. Dann gibt es einen Punkt [mm] x_0 [/mm] mit [mm] f(x_0)=c>0. [/mm] Aufgrund der Stetigkeit gibt es eine ganze Umgebung um [mm] x_0, [/mm] sodass die Funktion dort positiv ist. Kann dann noch das [mm] $L_1$ [/mm] -Maß=0 sein?

Gruß Patrick

Bezug
                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Di 19.01.2010
Autor: Bodo0686

ich denke nicht...

Bezug
                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 19.01.2010
Autor: XPatrickX

Ja,
dann schreibe das noch sauber und vernünftig auf und du bist fertig mit b.)

Bezug
                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Di 19.01.2010
Autor: fred97


> Hallo,
>  
> also ist a so korrekt?

Wenn Du Deine "Lösung" von a) meinst, leider nein


>  
> Bei b) habe ich etwas vergessen... "ist die Nullfunktion"

Ist [mm] $||f||_1 [/mm] = 0$, so ist f =0 fast überall. Wegen der Stetigkeit von f ist dann f =0 überall.


FRED


>  
> Grüße


Bezug
                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Di 19.01.2010
Autor: Bodo0686

Hi,

ok, wie müsste ich denn hier bei a) vorgehen? Ich stehe ein wenig aufm Schlauch...

Grüße

Bezug
                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Di 19.01.2010
Autor: fred97

gfm hats Dir doch oben vorgemacht !!

FRED

Bezug
                                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Di 19.01.2010
Autor: Bodo0686

Ja, dass habe ich mir auch durchgelesen. Aber das ist doch noch nicht die Lösung oder doch?

Grüß

Bezug
                                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Di 19.01.2010
Autor: fred97

Nochmal: sei A eine Nullmenge.

Annahme: A enthält einen inneren Punkt [mm] x_0. [/mm] Dann gibt es ein r>0 mit

             $K := [mm] \{x \in \IR^n: ||x-x_0||
Das Maß von K ist >0. Kann dann A eine Nullmenge sein ??

FRED

                

Bezug
                                                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Di 19.01.2010
Autor: Bodo0686

Hallo,

Nein, kann es nicht mehr!

Grüße

Bezug
                                                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 19.01.2010
Autor: fred97


> Hallo,
>  
> Nein, kann es nicht mehr!


Ja, war ja auch noch nie

FRED

>  
> Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de