www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Nullraum der Matrix bestimmen
Nullraum der Matrix bestimmen < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullraum der Matrix bestimmen: Parameter setzen
Status: (Frage) beantwortet Status 
Datum: 00:41 So 04.04.2010
Autor: Ikarus81

Aufgabe
Bestimmen sie den Nullraum der Matrix

[mm] \vmat{ 2 & 4 & 6 & 1 \\ 1 & 2 & 3 & 1 \\ 3 & 6 & 9 & -1 \\ 1 & 2 & 3 & 5 } [/mm]

Hallo!

Beim auflösen merkt man schnell dass [mm] x_{4} [/mm] = 0 ist und somit sich die Gleichungen wegstreichen, so komme ich auf
t [mm] \pmat{ x_{1} \\ 2x_{2} \\ 3x_{3} \\ 0 } [/mm]

Unser Dozent bekommt allerdings

t [mm] \pmat{ -2x_{1} \\ x_{2} \\ 0 \\ 0 } [/mm] + u [mm] \pmat{ -3x_{1} \\ 0 \\ x_{3} \\ 0 } [/mm]

Ist das seine freie Interpretation oder die einzige Lösung dazu?

        
Bezug
Nullraum der Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:12 So 04.04.2010
Autor: leduart

Hallo
Warum schreibst du :
t $ [mm] \pmat{ -2x_{1} \\ x_{2} \\ 0 \\ 0 } [/mm] $ + u $ [mm] \pmat{ -3x_{1} \\ 0 \\ x_{3} \\ 0 } [/mm] $
und nicht
t $ [mm] \pmat{ -2 \\ 1 \\ 0 \\ 0 } [/mm] $ + u $ [mm] \pmat{ -3 \\ 0 \\ 1 \\ 0 } [/mm] $
wenn man [mm] x_4=0 [/mm] hat bleibt doch noch die Gleichung
[mm] 2x_1+4x_2+6x_3=0 [/mm]
wenn du [mm] x_3=0 [/mm] setzest hast du den ersten Vektor, wenn du [mm] x_2=0 [/mm] setzest en zweiten,
natürlich kann man auch andere Wahlen treffen, das sind aber die einfachsten.
Dein einer Vektor löst doch die Gleichung nicht?
wie kommst du auf den?
Gruss leduart

Bezug
                
Bezug
Nullraum der Matrix bestimmen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:51 So 04.04.2010
Autor: Ikarus81

Genau, das ist das Problem. Ich bekunde grosse Mühe zusehen wie aus [mm] 2x_{1} +4x_{2} +6x_{3} [/mm] die Lösung gebastelt werden kann. Wenn man nach deiner Anleitung [mm] x_{3} [/mm] Null setzt, dann bleibt ja [mm] 2x_{1}=-4x_{2}, [/mm] bzw. [mm] x_{1}=-2x_{2} [/mm] . Wenn ich nun [mm] x_{1} [/mm] als t definiere, kommt da t [mm] \pmat{ 1 \\ -2 \\ 0 \\ 0} [/mm]
raus... Irgendwie bau ich Mist, komm aber nicht dahinter wo...


Bezug
                        
Bezug
Nullraum der Matrix bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:59 So 04.04.2010
Autor: angela.h.b.

Hallo,

am besten postest Du mal Deine zeilenstufenform, dann kann man Dir gut zeigen, wie es geht.

Gruß v. Angela

Bezug
                                
Bezug
Nullraum der Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 So 04.04.2010
Autor: Ikarus81

[mm] \vmat{ 2 & 4 & 6 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & -16 } [/mm]

Bezug
                                        
Bezug
Nullraum der Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:28 So 04.04.2010
Autor: angela.h.b.


> [mm]\vmat{ 2 & 4 & 6 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & -16 }[/mm]
>  

Hallo,

das ist aber nicht die Zeilenstufenform.

Die Zeilenstufenform ist [mm] \vmat{ \green{2} & 4 & 6 & 1 \\ 0 & 0 & 0 & \green{1 }\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 }. [/mm]

So kannst Du systematisch vorgehen:

die führenden Elemente der Nichtnullzeilen stehen in der 1. und 4. Spalte.
Also kann man die 2. und 3. Variable frei wählen:

[mm] x_2=r [/mm]
[mm] x_3=s. [/mm]

Aus der 2.Zeile erhält man

[mm] x_4=0 [/mm]

und aus der ersten

[mm] x_1=0.5*(-4x_2-6x_3-x_4)=-2r-3s. [/mm]

Also haben die Lösungen die Gestalt [mm] \vektor{x_1\\x_2\\x_3\\x_4}=\vektor{-2r-3s\\r\\s\\0}=r\vektor{-2\\1\\0\\0}+s\vektor{-3\\0\\1\\0}. [/mm]

Die beiden Vektoren [mm] \vektor{-2\\1\\0\\0} [/mm] und [mm] \vektor{-3\\0\\1\\0} [/mm] sind eine Basis des Lösungsraumes.
Viele andere Basen sind denkbar, diese hier springt einem in die Arme.

Gruß v. Angela


Bezug
                                                
Bezug
Nullraum der Matrix bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 So 04.04.2010
Autor: Ikarus81

Vielen herzlichen Dank für deine ausführliche Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de