www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Nullstelle komplexes Polynom
Nullstelle komplexes Polynom < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle komplexes Polynom: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:08 Mo 09.12.2013
Autor: Bindl

Aufgabe
Finden sie alle Nullstellen des komplexen Polynoms:

p(z) = [mm] z^4 [/mm] + 2z - 2iz

Hi,

ich habe das ganze versucht zu lösen und komme auch auf ein Ergebnis.
Ich bin mir jedoch nicht sicher ob es stimmr.

[mm] z^4 [/mm] + 2z - 2iz = 0
[mm] z(z^3 [/mm] + 2 -2i)       -> einfache Nullstelle bei z=0

[mm] z^3 [/mm] = 2i - 2        Mit 2i - 2 = 0
[mm] \wurzel[3]{|0|}e^{i\bruch{\alpha + 2k\pi}{3}} [/mm] für k=0,1,2
[mm] \alpha [/mm] = Winkel = 0
da [mm] \wurzel[3]{|0|} [/mm] = 0    -> 3-fache Nullstelle bei z=0

Also ist bei z=0 eine 4-fache Nullstelle ???

        
Bezug
Nullstelle komplexes Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Mo 09.12.2013
Autor: reverend

Hallo Bindl,

abenteuerlich!

> Finden sie alle Nullstellen des komplexen Polynoms:
>  
> p(z) = [mm]z^4[/mm] + 2z - 2iz
>  Hi,
>  
> ich habe das ganze versucht zu lösen und komme auch auf
> ein Ergebnis.
>  Ich bin mir jedoch nicht sicher ob es stimmr.
>  
> [mm]z^4[/mm] + 2z - 2iz = 0
>  [mm]z(z^3[/mm] + 2 -2i)       -> einfache Nullstelle bei z=0

Richtig.
  

> [mm]z^3[/mm] = 2i - 2        Mit 2i - 2 = 0

[haee] Es gilt definitiv [mm] 2i-2\not=0. [/mm] Das kannst Du doch nicht einfach Null setzen.

Ab hier gehts weiter, z.B. mit der MBMoivre-Formel.

>  [mm]\wurzel[3]{|0|}e^{i\bruch{\alpha + 2k\pi}{3}}[/mm] für
> k=0,1,2
>  [mm]\alpha[/mm] = Winkel = 0
>  da [mm]\wurzel[3]{|0|}[/mm] = 0    -> 3-fache Nullstelle bei z=0

Quatsch!

> Also ist bei z=0 eine 4-fache Nullstelle ???

In keinem Fall.

Grüße
reverend

Bezug
                
Bezug
Nullstelle komplexes Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 09.12.2013
Autor: Bindl

Dachte mir schon das meine Lösung nicht stimmen kann.

Also,
[mm] z^3 [/mm] = 2i - 2
[mm] \wurzel[n]{|a|}e^{i\bruch{\alpha + 2k\pi}{n}} [/mm] für k=0,1,2
|a| = [mm] \wurzel{2^2 + (-2)^2} [/mm] = [mm] \wurzel{8} [/mm] = [mm] 2\wurzel{2} [/mm]

Also n = 3 und |a| habe ich auch.

Nur wie bekomme ich den Winkel [mm] \alpha? [/mm]
Wenn ich den habe muss ich ja nur noch k=0,1,2 einsetzen und dann habe ich die weiteren Nullstellen, oder ?

Bezug
                        
Bezug
Nullstelle komplexes Polynom: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:45 Mo 09.12.2013
Autor: Bindl

Geht das wie folgt ?

[mm] \alpha [/mm] = arccos(x/|a|)

oder auch

[mm] \alpha [/mm] = arcsin(y/|a|)

Bezug
                                
Bezug
Nullstelle komplexes Polynom: siehe andere Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Mo 09.12.2013
Autor: Roadrunner

Hallo Bindl!


Siehe dazu die Links in meiner letzten Antwort.


Gruß vom
Roadrunner

Bezug
                        
Bezug
Nullstelle komplexes Polynom: aufskizzieren
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 09.12.2013
Autor: Roadrunner

Hallo Bindl!


>  |a| = [mm]\wurzel{2^2 + (-2)^2}[/mm] = [mm]\wurzel{8}[/mm] = [mm]2\wurzel{2}[/mm]

[ok]


> Nur wie bekomme ich den Winkel [mm]\alpha?[/mm]

Im Zweifelsfalle kann man sich das auch in der Gauß'schen Zahlenebene aufskizzieren.

Ansonsten siehe mal hier unter MBkomplexe Zahl bzw. MBArgumentbestimmung komplexer Zahlen.


> Wenn ich den habe muss ich ja nur noch k=0,1,2 einsetzen
> und dann habe ich die weiteren Nullstellen, oder ?

[ok]


Gruß vom
Roadrunner


Bezug
                                
Bezug
Nullstelle komplexes Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Mo 09.12.2013
Autor: Bindl

Danke für die Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de