www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Nullstellen+Funktionsterm best
Nullstellen+Funktionsterm best < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen+Funktionsterm best: Frage !!!
Status: (Frage) beantwortet Status 
Datum: 13:43 So 05.06.2005
Autor: steph

Hallo,

hätte folgende dringende Frage,

1. ich habe die FUnktion f(x)= [mm] -1/36x^4+x^2 [/mm]

Die Funktion läuft doch normerlweise von UNTEN nach UNTEN oder ???

2. Die Parabel G mit der Gleichung P(x)= [mm] ax^2+bx+c [/mm] (a,b,c = alle Zahlen aber a [mm] \not [/mm] 0) schneidet G(f) im Punkt A (6/y). Aaußerdem verläuft sie durch den PUnkt B 2/8. Berechnen Sie b und c in Abh. von a.

Ich habe wirklich keine Ahnung!! Mit einem Gleichungssystem habe ich es schon probiert, aber ich komm nur auf falsche Lösungen...

3. Bestimmen Sie nun a noch so, dass die Parabel auch durch den Punkt C (3/y) des GFraphen Gf verläuft.

Eigentlich wollte ich den Punkt einsetzen, aber das geht ja nicht, weil ich die vorige Gleichung nicht habe....

Würde mich freuen, wenn mir jemand helfen könnte !!!

BESTEN DANK !!

gruss
steph



        
Bezug
Nullstellen+Funktionsterm best: Hilfe
Status: (Antwort) fertig Status 
Datum: 14:05 So 05.06.2005
Autor: Zwerglein

Hi, steph,

> 1. ich habe die FUnktion f(x)= [mm]-1/36x^4+x^2[/mm]
>
> Die Funktion läuft doch normerlweise von UNTEN nach UNTEN
> oder ???

Richtig!
Aber laut Überschrift sollst Du vermutlich die Nullstellen bestimmen, stimmt's?
Nun: [mm] -\bruch{1}{36}x^{2} [/mm] ausklammern. Dann siehst Du: eine doppelte Nullstellen und zwei einfache!

>  
> 2. Die Parabel G mit der Gleichung P(x)= [mm]ax^2+bx+c[/mm] (a,b,c =
> alle Zahlen aber a [mm]\not[/mm] 0) schneidet G(f) im Punkt A (6/y).
> Aaußerdem verläuft sie durch den PUnkt B 2/8. Berechnen Sie
> b und c in Abh. von a.
>

1. Bedingung: Der Punkt A ist Schnittpunkt der Graphen. Daher liegt er speziell auf dem Graphen von f. Folglich kannst Du seine y-Koordinate ausrechnen: f(6) = ?  (Ergebnis übrigens: 0)
Daher: (I) 36a + 6b + c = 0.

2. Bedingung: B(2/8).
Daher: (II) 4a + 2b + c = 8

Erste Lösungsschritte: Bilde die Differenz (I) - (II). Dadurch fällt c weg und Du hast eine Gleichung mit nur noch a und b. Die löst Du nach b auf; das ist dann bereits das gewünschte Ergebnis für b.
Das setzt Du dann z.B. in (II) ein und löst nach c auf.
Beide Ergebniss, also für b und c, hängen wohl von a ab. Aber das soll ja so sein! Drum jetzt nur noch in die Ausgangsgleichung g(x) einsetzen und Du hast den Funktionsterm gefunden!
(Ohne Gewähr: g(x) = [mm] ax^{2} [/mm] -(8a+2)x + (12a+12).)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de