www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Nullstellen
Nullstellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Di 03.02.2004
Autor: Nick

Hallo, könnt ihr mir nen Tipp bei der Aufgabe geben? Ich hab mal wieder nen massives Eichenbrett vor dem Kopf.

Gegeben sei die folgende Abbildungsvorschrift:

f(x) := exp([mm]\bruch{ln(1+x²)}{x}[/mm].

Bestimmen Sie den größt möglichen Definitionsbereich zu f und geben Sie die Grenzwerte von f an den Rändern des Definitionsbereiches an.

Danke schon mal!!

Euer
Nick

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 03.02.2004
Autor: Marc

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Nick,

dann will ich mir nochmal an Grenzwerten die Finger verbrennen ;-)

Der maximal Definitionsbereich ist offenbar $D=\IR\setminus\{0\}$, denn das Argument des Logarithmus ist für alle $x\in\IR$ positiv, und $\exp$ schränkt den Definitionsbereich auch nicht ein. "Probleme" macht nur der Nenner des Bruches, wenn er Null wird, also bei $x=0$.

Damit ergeben sich vier Ränder des Definitionsbereichs:
(a) $-\infty$
(b) $+\infty$
(c) $-0$ (von links an die Null)
(d) $+0$ (von rechts an die Null)

Bei all diesen Grenzwerten müßtest du mit den Sätzen von l'Hôpital weiter kommen, ich probiere es mal für (b):

Und zwar berechne ich zunächst den Limes des Arguments von $\exp$, da
$\limes \exp\left( \frac{f(x)}{g(x)}\right) = \exp\left( \limes \frac{f(x)}{g(x)}\right)$
gilt, wegen der Stetigkeit von $\exp$.

$\limes_{x\to+\infty}\frac{\ln(1+x^2)}{x}=\limes_{x\to+\infty}\frac{f(x)}{g(x)}}$

Es gilt $f(x)=\ln(1+x^2)\to+\infty$ und $g(x)=x\to+\infty$ für $x\to+\infty$, nach dem Satz von l'Hôpital wäre der Limes also gleich (unter der Voraussetzung, dass folgender Limes überhaupt exisitiert):

$=\limes_{x\to\+\infty}\frac{f'(x)}{g'(x)}$
$=\limes_{x\to\+\infty}\frac{2x*\frac{1}{1+x^2}}{1}$
$=\limes_{x\to\+\infty}\frac{2x}{1+x^2}=0$

Damit haben wir
$\limes_{x\to+\infty}\exp\left( \frac{\ln(1+x^2)}{x}\right)$
$=\exp\left( \limes_{x\to+\infty}\frac{f(x)}{g(x)}}\right) $
$=\exp\left( \limes_{x\to+\infty}\frac{f'(x)}{g'(x)}}\right) $
$=\exp\left( 0 \right) $
$=1$

Kommst du nun zurecht mit den anderen Grenzwerten? Falls nicht, weißt du ja, wo du uns findest :-)

Alles Gute,
Marc.

Bezug
                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 03.02.2004
Autor: Nick

Danke,

habe jetzt alles verstanden. Hatte wohl ein Brett vor dem Kopf.

Nick.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de