www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Nullstellen
Nullstellen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 So 07.02.2010
Autor: papillon

Aufgabe
Gegeben sei das Polynom
[mm] x^n [/mm] + [mm] a_1 x^{n-1} [/mm] + ... + [mm] a_n [/mm] = 0.
Dabei seien alle Nullstellen des Polynoms [mm] \in \IR. [/mm] Dann sind die Nullstellen in einem Interval mit den Grenzen
[mm] -\bruch{a_1}{n}\pm \bruch{n-1}{n}\wurzel{a_1^2-\bruch{2n}{n-1}a_2}. [/mm]

Gibt es Polynome, für die die Grenzen erreicht werden?

Zeigen Sie zunächst
[mm] a_1^2-2a_2-y^2 [/mm] = [mm] \summe_{i=1}^{n-1}y_i^2 [/mm]
wobei y eine Nullstelle ist, [mm] y_1,...,y_n [/mm] sind die restlichen Nullstellen.

Wenden sie dazu die Cauchy-Schwarz'sche Ungleichung auf [mm] [y_1,...,y_{n-1}] [/mm] und [1,...,1] an.

Hallo!

Wenn ich die Ungleichung wie vorgeschlagen auswerte, ergibt sich

[mm] y_1+y_2+...+y_{n-1} \le \wurzel{y_1^2+...+y_{n-1}^2}\wurzel{n-1} [/mm]

Dies bedeutet

[mm] \summe_{i=1}^{n-1}y_i^2 \ge \bruch{(y_1+...+y_{n-1})^2}{n-1} [/mm]

Aber wie mache ich jetzt weiter? Wie bekomme ich [mm] a_1 [/mm] und [mm] a_2 [/mm] in meine Überlegungen?

Ich wäre dankbar für eure Hilfe!

Papillon

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Mo 08.02.2010
Autor: felixf

Hallo!

> Gegeben sei das Polynom
>  [mm]x^n[/mm] + [mm]a_1 x^{n-1}[/mm] + ... + [mm]a_n[/mm] = 0.
>  Dabei seien alle Nullstellen des Polynoms [mm]\in \IR.[/mm] Dann
> sind die Nullstellen in einem Interval mit den Grenzen
>  [mm]-\bruch{a_1}{n}\pm \bruch{n-1}{n}\wurzel{a_1^2-\bruch{2n}{n-1}a_2}.[/mm]
>  
> Gibt es Polynome, für die die Grenzen erreicht werden?
>  
> Zeigen Sie zunächst
>  [mm]a_1^2-2a_2-y^2[/mm] = [mm]\summe_{i=1}^{n-1}y_i^2[/mm]

Soll hier Gleichheit oder Ungleichheit gelten?

>  wobei y eine Nullstelle ist, [mm]y_1,...,y_n[/mm] sind die
> restlichen Nullstellen.

Du meinst [mm] $y_1, \dots, y_{n-1}$? [/mm]

> Wenden sie dazu die Cauchy-Schwarz'sche Ungleichung auf
> [mm][y_1,...,y_{n-1}][/mm] und [1,...,1] an.
>  Hallo!
>  
> Wenn ich die Ungleichung wie vorgeschlagen auswerte, ergibt
> sich
>  
> [mm]y_1+y_2+...+y_{n-1} \le \wurzel{y_1^2+...+y_{n-1}^2}\wurzel{n-1}[/mm]
>  
> Dies bedeutet
>  
> [mm]\summe_{i=1}^{n-1}y_i^2 \ge \bruch{(y_1+...+y_{n-1})^2}{n-1}[/mm]
>  
> Aber wie mache ich jetzt weiter? Wie bekomme ich [mm]a_1[/mm] und
> [mm]a_2[/mm] in meine Überlegungen?

Beachte, dass [mm] $a_1 [/mm] = -(y + [mm] y_1 [/mm] + [mm] y_2 [/mm] + [mm] \dots [/mm] + [mm] y_{n-1})$ [/mm] ist.

Weiterhin ist [mm] $a_2 [/mm] = [mm] \prod_{1 \le i < j \le n} y_i y_j$ [/mm] mit [mm] $y_n [/mm] := y$, aber k.A. ob/inwiefern dir das hilft.

LG Felix


Bezug
                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 Mo 08.02.2010
Autor: papillon

Danke erstmal für die Hilfe, die Gleichungen für [mm] a_1 [/mm] und [mm] a_2 [/mm] erscheinen mir nützlich. Ich vermute, dass es wie von dir vermutet um [mm] y_1 [/mm] bis [mm] y_{n-1} [/mm] geht, allerdings habe ich die Aufgabe exakt so wiedergegeben, wie sie gestellt wurde.

Kannst du mir vielleicht noch etwas ausführlicher erläutern, wie die Gleichungen für [mm] a_1 [/mm] und [mm] a_2 [/mm] zustande kommen.

Danke!

Papi

Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Mo 08.02.2010
Autor: felixf

Moin Papi!

> Danke erstmal für die Hilfe, die Gleichungen für [mm]a_1[/mm] und
> [mm]a_2[/mm] erscheinen mir nützlich. Ich vermute, dass es wie von
> dir vermutet um [mm]y_1[/mm] bis [mm]y_{n-1}[/mm] geht, allerdings habe ich
> die Aufgabe exakt so wiedergegeben, wie sie gestellt
> wurde.
>  
> Kannst du mir vielleicht noch etwas ausführlicher
> erläutern, wie die Gleichungen für [mm]a_1[/mm] und [mm]a_2[/mm] zustande
> kommen.

Es ist ja [mm] $x^n [/mm] + [mm] a_1 x^{n-1} [/mm] + [mm] a_2 x^{n-2} [/mm] + [mm] \dots [/mm] = [mm] \prod_{i=1}^n [/mm] (x - [mm] y_i)$ [/mm] (mit $y = [mm] y_n$). [/mm] Wenn du jetzt das Produkt ausmultiplizierst und nach Potenzen von $x$ sortierst, siehst du, dass der Koeffizient vor [mm] $x^{n-1}$ [/mm] gerade [mm] $-y_1 [/mm] - [mm] y_2 [/mm] - [mm] y_3 [/mm] - [mm] \dots [/mm] - [mm] y_n$ [/mm] ist, und der vor [mm] $x^{n-2}$ [/mm] gerade [mm] $y_1 y_2 [/mm] + [mm] y_1 y_3 [/mm] + [mm] y_1 y_4 [/mm] + [mm] \dots [/mm] + [mm] y_1 y_n [/mm] + [mm] y_2 y_3 [/mm] + [mm] y_2 y_4 [/mm] + [mm] \dots [/mm] = [mm] \prod_{1 \le i < j \le n} y_i y_j$ [/mm] (beachte die Aehnlichkeit zu den []elementarsymmetrischen Polynomen -- das ist kein Zufall, sondern der []Wurzelsatz von Vieta).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de