www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Nullstellen
Nullstellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Beweis
Status: (Frage) beantwortet Status 
Datum: 10:51 So 03.07.2005
Autor: Becks

Hallo zusammen! :)

Ich habe ein kleines Problem bei einem Beweis und weiß nicht, wie ich das zeigen soll.

Beweisen Sie für ein Polynom p vom Grad n [mm] \ge [/mm] 1: Genau dann hat p eine k-fache Nullstelle im Punkt a (d.h. es gilt [mm] p(x)=(x-a)^{k}q(x) [/mm] mit einem Polynom q vom Grad [mm] n-k\ge0 [/mm] mit [mm] q(a)\not=0), [/mm] wenn

p(a)=p´(a)= ... = [mm] p^{(k-1)}(a)=0 [/mm] und [mm] p^{(k)}(a)\not= [/mm] 0.

Hinweis: Benutzen Sie zur Lösung die Produktregel von Leipnitz. Selbige besagt: Sind f,g ]c,d[ [mm] \to \IR [/mm] mindestens k-mal differenzierbar, so gilt

[mm] (fg)^{(k)}(x)=\summe^{k}_{\mu=0} \vektor{k \\ \mu}f^{(\mu)}(x)g^{(k-\mu)}(x) [/mm] für x [mm] \in [/mm] ]c,d[ wobei [mm] f^{(0)}:=f [/mm] und [mm] f^{(0)}:=g [/mm]

Ich hoffe ihr könnt mir da helfen.

Viele Grüße Becks

        
Bezug
Nullstellen: Kleine Hinweise
Status: (Antwort) fertig Status 
Datum: 19:14 So 03.07.2005
Autor: kuroiya

Hallo

Was du (unter den genannten Voraussetzungen) beweisen sollst, ist.

p(x) = (x - [mm] a)^k*q(x) [/mm] [q(a) [mm] \not= [/mm] 0]  [mm] \gdw [/mm]  p(a) = p'(a) = ... = [mm] p^{(k-1)}(a) [/mm] = 0, [mm] p^{(k)}(a) \not= [/mm] 0.

" [mm] \Rightarrow" [/mm] Ist einfach, schaust dir die Formel an und guckst, was passiert (Benutze: [mm] 0^z [/mm] = 0 , z [mm] \in \IZ\\{0}; 0^0 [/mm] = 1)

[mm] "\Leftarrow" [/mm] ist meiner Ansicht einfach, dass du es konstruieren sollst, und kommst dann, dass es die Form [mm] (x-a)^k [/mm] haben muss, und Multiplikation mit einer Konstante ausser Null ( q(a) )  ändert daran nix.

Bezug
                
Bezug
Nullstellen: Eläuterung
Status: (Frage) beantwortet Status 
Datum: 20:00 So 03.07.2005
Autor: Becks

Sorry, ich glaube ich verstehe das nicht so richtig. :(
Kannst du es vielleicht etwas mehr erläutern?
Wäre dir sehr dankbar.

Viele Grüße Becks

Bezug
                        
Bezug
Nullstellen: Erläuterung
Status: (Antwort) fertig Status 
Datum: 20:34 So 03.07.2005
Autor: kuroiya

zu [mm] "\Rightarrow": [/mm]

Schauen wir uns mal die erste Ableitung an:
p'(x) = k(x-a)^(k-1)*q(x) - [mm] (x-a)^k [/mm] *q'(x)
p'(a) ist offensichtlich 0.

ich nehme an, dass dir die Formel  [mm] \vektor{a \\ b} [/mm] = [mm] \frac{a!}{b!(a-b)!} [/mm] bekannt ist.

Wenn du dir also die Leibnitzsche Produktformel anschaust, erkennst du, dass du bis zur (m-1)-ten Ableitung nur Terme hast, die [mm] Vorfaktor*(x-a)^n [/mm] (n [mm] \in [/mm] (0, m-1) ) *(irgendwelche Ableitungen von q(x)) beinhalten. An der Stelle x = a werden diese alle Null.

Betrachte nun die m-te Ableitung. Hier tritt nun insbesondere ein Term auf: [mm] m!(x-a)^0*q(x). [/mm] Und da [mm] 0^0 [/mm] =1 ist die m-te Ableitung an der Stelle a [mm] \not= [/mm] 0, sondern m!q(a) (bemerke die Voraussetzung q(a) [mm] \not= [/mm] 0).

Das musst du nur noch ein bischen schön hübsch mathematisch formulieren.


Bezug
                                
Bezug
Nullstellen: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Mi 06.07.2005
Autor: Becks

Ich werde mir das gleich mal anschauen. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de