www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Nullstellen, Extremwerte
Nullstellen, Extremwerte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen, Extremwerte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 10.05.2011
Autor: RWBK

Aufgabe
Nullstellen und Extremwerte bestimmen

f(x) [mm] =\bruch{1}{1+e^{\bruch{1}{x}}} [/mm]



Hallo, bei dieser Aufgabe habe ich massive schwierigkeiten.

Hier erst mal mein Ansatz:

Nullstellen

f(x) = 0
[mm] 0=\bruch{1}{1+e^{\bruch{1}{x}}} [/mm]
0= [mm] 1+e^{\bruch{1}{x}} [/mm] Da hängt es schon wieder wollte das dann nach x umstellen
Aber ln(0) und ln(-1) kann man ja nicht berechnen oder?Was mache ich falsch, wo ist liegt mein Gedankenfehler?
Extrema:
f´(x) = 0
f´´(x) [mm] \not= [/mm] 0

Hier habe ich leider schwierigkeiten mit der Ableitung, wollte die Kettenregel und die Quotientenregel verwenden komme aber auf ein völlig falsches ergebnis als wie im Löser
MFg
RWBK

        
Bezug
Nullstellen, Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Di 10.05.2011
Autor: schachuzipus

Hallo RWBK,

> Nullstellen und Extremwerte bestimmen
>
> f(x) [mm]=\bruch{1}{1+e^{\bruch{1}{x}}}[/mm]
>
> Hallo, bei dieser Aufgabe habe ich massive
> schwierigkeiten.
>
> Hier erst mal mein Ansatz
>
> Nullstellen
>
> f(x) = 0
> [mm]0=\bruch{1}{1+e^{\bruch{1}{x}}}[/mm]
> 0= [mm]1+e^{\bruch{1}{x}}[/mm] [kopfkratz3]


Wie kommst du darauf?

Wenn du mit [mm]1+e^{1/x}\neq 0[/mm] durchmultiplizierst, steht doch da [mm]0=1[/mm]

Also gibt es keine NST(en)

Merke: Ein Bruch ist genau dann [mm]=0[/mm], wenn der Zähler [mm]=0[/mm] ist!

> Da hängt es schon wieder wollte das
> dann nach x umstellen
> Aber ln(0) und ln(-1) kann man ja nicht berechnen oder?Was
> mache ich falsch wo ist mein Gedanken fehler.
>
> Extrema:
> f´(x) = 0
> f´´(x) [mm]\not=[/mm] 0
>
> Das weiß ich habe aber ehrlich gesagt mit der Ableitung
> schwierigkeiten wollte mit der Kettenregel und der
> Quotientenregel arbeiten komme aber auf ein völlig
> falsches Ergebnis laut löser- Hoffe es kann mir jemand
> helfen.

Dann rechne mal vor. Quotienten- und Kettenregel hört sich schon ganz richtig an.

Berechne vllt. mal in einer Nebenrechnung zuerst die Ableitung von [mm]1+e^{1/x}[/mm]

>
> MFg
> RWBK

Gruß

schachuzipus


Bezug
                
Bezug
Nullstellen, Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 10.05.2011
Autor: RWBK

Danke für deine schnelle Antwort!

Zu meinen Ableitungen hab mein Fehler schon gefunden das passt jetzt.

Hab aber noch mal eine Frage zum Thema Nullstellen.

Bei dieser Aufgabe hieße das also es gibt keine  Nullstellen.

Dann schreibt mein Lehrer in der Lösung Ergänzbarkeit was meint er damit??  und berechnet dann [mm] \limes_{n\rightarrow0-}= [/mm] 1 und [mm] \limes_{n\rightarrow0+}= [/mm] 0 kann mir das vllt auch noch jemand mal kurz erläutern bitte?

mfg
RWBK

Bezug
                        
Bezug
Nullstellen, Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Di 10.05.2011
Autor: fred97


> Danke für deine schnelle Antwort!
>  
> Zu meinen Ableitungen hab mein Fehler schon gefunden das
> passt jetzt.
>  
> Hab aber noch mal eine Frage zum Thema Nullstellen.
>  
> Bei dieser Aufgabe hieße das also es gibt keine  
> Nullstellen.

Ja


>  
> Dann schreibt mein Lehrer in der Lösung Ergänzbarkeit was
> meint er damit??  und berechnet dann
> [mm]\limes_{n\rightarrow0-}=[/mm] 1 und [mm]\limes_{n\rightarrow0+}=[/mm] 0
> kann mir das vllt auch noch jemand mal kurz erläutern
> bitte?

Die Funktion

     $f(x)  [mm] =\bruch{1}{1+e^{\bruch{1}{x}}} [/mm] $

ist ja in x=0 nicht definiert. Dann stellt sich die Frage , ob man nachträglich  f in x=0 so def. kann, dass f in x=0 stetig wird.

Das geht nur, wenn [mm] \limes_{x \rightarrow 0+0}f(x)= \limes_{x \rightarrow 0-0}f(x) [/mm] ist.

Bei obigem f ist aber

          $   [mm] \limes_{x \rightarrow 0+0}f(x)=0 \ne [/mm] 1= [mm] \limes_{x \rightarrow 0-0}f(x) [/mm] $

FRED

>  
> mfg
>  RWBK


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de