www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Nullstellen Funktionen
Nullstellen Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 28.11.2011
Autor: Yulice

Aufgabe
f(x)=(2x-5)²-(x-3)*(2x-5)/(2x-5)²
f(x)=x²+1/(x+2)² - 2/x+2
f(x)=(2x-3)²-(x-1)*2x-3)/(2x-3)²
f(x)=x²-7/(x+2)² + 2/x+2
[mm] f(x)=4^x [/mm] * [mm] (x^4-16) [/mm]
[mm] f(x)=e^{x+1}*(x^4 [/mm] -2x² + 1)

Bestimmen Sie, sofern existent- Die Nullstellen der angegeben Funktionen.
Hilfsmittel: Keine

Hallo,

ich komme mit den angegeben Aufgaben nicht so ganz klar.
Wie man Nullstellen berechnet weiß ich, nur habe ich das Problem, dass wir in der Schule IMMER Aufgaben nach dem Schema:
f(x)x²+2x+1
gerechnet haben.
Könnt ihr mir bei Lösungsansätzen helfen und mir Tipps geben, wie man sich das ganze ziemlich vereinfachen kann? Hier geht es ja eher um die Art des Rechenweges, statt um die Zahlen, da Taschenrechner nicht erlaubt sind.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Liebe Grüße
Yulice

        
Bezug
Nullstellen Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mo 28.11.2011
Autor: schachuzipus

Hallo Yulice und [willkommenmr],


> f(x)=(2x-5)²-(x-3)*(2x-5)/(2x-5)²
>  f(x)=x²+1/(x+2)² - 2/x+2
>  f(x)=(2x-3)²-(x-1)*2x-3)/(2x-3)²
>  f(x)=x²-7/(x+2)² + 2/x+2
>  [mm]f(x)=4^x[/mm] * [mm](x^4-16)[/mm]
>  [mm]f(x)=e^{x+1}*(x^4[/mm] -2x² + 1)
>  
> Bestimmen Sie, sofern existent- Die Nullstellen der
> angegeben Funktionen.
> Hilfsmittel: Keine
>  Hallo,
>  
> ich komme mit den angegeben Aufgaben nicht so ganz klar.
>  Wie man Nullstellen berechnet weiß ich, nur habe ich das
> Problem, dass wir in der Schule IMMER Aufgaben nach dem
> Schema:
>  f(x)x²+2x+1
>  gerechnet haben.
>  Könnt ihr mir bei Lösungsansätzen helfen und mir Tipps
> geben, wie man sich das ganze ziemlich vereinfachen kann?
> Hier geht es ja eher um die Art des Rechenweges, statt um
> die Zahlen, da Taschenrechner nicht erlaubt sind.

Zunächst solltest du die Klammersetzung überprüfen, denn in Mitteleuropa gilt Punkt- vor Strichrechnung!

So steht etwa in a) [mm]f(x)=(2x-5)^2-\frac{(x-3)(2x-5)}{(2x-5)^2}[/mm]

Da kannst du erstmal kürzen im Bruch oder gleichnamig machen und dann beachten, dass ein Bruch genau dann =0 ist, wenn der Zähler =0 ist.

Ich kann mir auch nur schwer vorstellen, dass die b) so gemeint ist, wie sie dasteht ...

Bei d) steht gar [mm]f(x)=x^2-\frac{7}{(x+2)^2}-\frac{2}{x}+2[/mm]

Klicke auf meine Formel und du siehst den Quelltext ...

Da musst du wohl auch gleichnamig machen, also erstmal den Hauptnenner finden und dann die Nullstellen des Zählers betrachten.

Bei den letzten beiden beachte, dass die Exponentialfunktion nur Funktionswerte >0, also insbes. [mm]\neq 0[/mm], liefert.

Ebenso [mm]4^x>0[/mm] für alle [mm]x[/mm]


Und benutze mal besser den Editor!

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Liebe Grüße
>  Yulice

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de