www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Nullstellen berechnen
Nullstellen berechnen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen berechnen: Tipp, Rückfrage, Hilfe, Idee
Status: (Frage) beantwortet Status 
Datum: 15:02 So 14.01.2018
Autor: Dom_89

Hallo,

ich habe eine kleine Frage zum Berechnen von Nullstellen und komme aktuell irgendwie nicht mehr weiter.

Gegeben ist der Ausdruck:

[mm] (-1-\lambda)(2-\lambda)(2-\lambda)-(-1-\lambda)*1*1 [/mm]

Diesen Ausdruck habe ich zunächst ausmultipliziert und komme dann auf:

[mm] -\lambda^3+3\lambda^2+\lambda-3 [/mm]

=>Zwischenfrage: Kann man [mm] -\lambda^3 [/mm] so stehen lassen, oder muss ich hier noch zunächst mit -(1) multiplizieren?

Durch Testen habe ich dann die erste Nullstelle mit 1 erraten und möchte nun im nächsten Schritt die Polynomdivision durchführen:

[mm] -\lambda^3+3\lambda^2+\lambda-3 (\lambda-1) [/mm]

Ich erhalte dann:

[mm] -\lambda^2+2\lambda+3 [/mm]

Nun sollte man mit Hilfe der PQ-Formel ja die beiden übrigen Nullstellen bestimmen können (laut Lösung: -1 und 3) - ich befürchte aber, dass ich mich irgendwo verrannt habe, da ich auf diese Werte nicht komme.

Was habe ich falsch gemacht?

Vielen Dank!

        
Bezug
Nullstellen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 So 14.01.2018
Autor: Diophant

Hallo,

> Hallo,

>

> ich habe eine kleine Frage zum Berechnen von Nullstellen
> und komme aktuell irgendwie nicht mehr weiter.

>

> Gegeben ist der Ausdruck:

>

> [mm](-1-\lambda)(2-\lambda)(2-\lambda)-(-1-\lambda)*1*1[/mm]

>

> Diesen Ausdruck habe ich zunächst ausmultipliziert und
> komme dann auf:

>

> [mm]-\lambda^3+3\lambda^2+\lambda-3[/mm]

>

> =>Zwischenfrage: Kann man [mm]-\lambda^3[/mm] so stehen lassen, oder
> muss ich hier noch zunächst mit -(1) multiplizieren?

>

> Durch Testen habe ich dann die erste Nullstelle mit 1
> erraten und möchte nun im nächsten Schritt die
> Polynomdivision durchführen:

>

> [mm]-\lambda^3+3\lambda^2+\lambda-3 (\lambda-1)[/mm]

>

> Ich erhalte dann:

>

> [mm]-\lambda^2+2\lambda+3[/mm]

>

> Nun sollte man mit Hilfe der PQ-Formel ja die beiden
> übrigen Nullstellen bestimmen können (laut Lösung: -1
> und 3) - ich befürchte aber, dass ich mich irgendwo
> verrannt habe, da ich auf diese Werte nicht komme.

>

> Was habe ich falsch gemacht?

Alles viel zu umständlich!

Vereinfachen wir zunächst:

[mm]\left ( -1-\lambda \right )*(2-\lambda)^2-\left(-1-\lambda\right)=0[/mm]

(Man könnte noch mehr vereinfachen, wenn man das Minuszeichen aus dem einen Faktor zieht, aber ich wollte es im Originalzustand belassen).

So: und jetzt einmal scharf ansehen: siehst du den gemeinsamen Faktor [mm] (-1-\lambda) [/mm] ? Den klammern wir aus:

[mm]\left ( -1-\lambda \right )*\left((2-\lambda)^2-1\right)\right)=0[/mm]

Nun die Faktoren gleich Null setzen:

[mm]\begin{aligned} (-1-\lambda)&=0\ \Rightarrow\ \lambda_1=-1\\ \\ \left(2-\lambda\right)^2-1&=0\ \gdw\\ \left(2-\lambda\right)^2&=1 \end{aligned}[/mm]

Und hier darfst du jetzt selbst weiterrechnen. :-)

Merke: Ausmultiplizieren ist beim Lösen algebraischer Gleichungen i.d.R. nicht hilfreich - im Gegenteil!


Gruß, Diophant

Bezug
                
Bezug
Nullstellen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 So 14.01.2018
Autor: Dom_89

Vielen Dank für die Hilfe!!!

Nun hat es auch alles prima funktioniert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de