www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellen bestimmen
Nullstellen bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 19.08.2010
Autor: Polynom

Aufgabe
Bestimmen Sie die Nullstellen, dieser Funktion. Beachten Sie, dass es nicht für jedes k eine Nullstelle gibt.
[mm] fK(x)=x^2-2kx+1 [/mm]

Hallo,
muss ich jetzt nach dem x und nach dem k auflösen also so:
0= [mm] x^2-2kx+1 [/mm]
Aber das x kann ich nicht ausklammern, weil ich kein x bei der 1 habe, oder?
Was muss ich machen?
Vielen Dank für eure Antworten!

        
Bezug
Nullstellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Do 19.08.2010
Autor: rubi

Hallo Polynom,

Die Funktion [mm] f_{k}(x) [/mm] bedeutet, dass die Variable x ist und k einen Parameter darstellt.
Du musst die Gleichung somit nach x auflösen, wobei deine Lösung dann abhängig vom Parameter k sein wird.

Ausklammern funktioniert hier tatsächlich nicht. Da es sich hier jedoch um eine quadratische Gleichung handelt, gibt es hierzu bestimmte Formeln, mit der solche Gleichungen gelöst werden können. Diese habt ihr bis zur 12.Klasse bestimmt schon im Unterricht behandelt. Hilft wir das weiter ?

Noch ein Hinweis: Aufgrund der Aufgabenstellung sollte man meines Erachtens dann auch noch angeben, für welche Werte von k Lösungen für x existieren und für welche nicht.

Bezug
                
Bezug
Nullstellen bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 19.08.2010
Autor: Polynom

Hallo,
also wenn ich nach x auflöse sieht das bei mir so aus:
x= [mm] -\bruch{2k}{2} [/mm] +/- [mm] \wurzel{(\bruch{2k}{2})^2 - 1} [/mm]
x= -k +/- [mm] \wurzel{k - 1} [/mm]
Ich kann doch aber nicht von k die Wurzel ziehen, was muss ich machen?
vielen Dank für eure Antworten!

Bezug
                        
Bezug
Nullstellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Do 19.08.2010
Autor: Gonozal_IX

Huhu,

> Hallo,
>  also wenn ich nach x auflöse sieht das bei mir so aus:
>  x= [mm]-\bruch{2k}{2}[/mm] +/- [mm]\wurzel{(\bruch{2k}{2})^2 - 1}[/mm]
>  x=
> -k +/- [mm]\wurzel{k - 1}[/mm]

Hier ist dir ein Fehler unterlaufen, es müsste korrekt:

$x = -k [mm] \pm \wurzel{k^2 - 1}$ [/mm] heissen.

Und nutze doch bitte den Formeleditor, das macht die Sache (wie du siehst) gleich viel leserlicher.


>  Ich kann doch aber nicht von k die
> Wurzel ziehen, was muss ich machen?

Sollst du auch nicht, aber diese Gleichung reicht dir schon aus, um die Fälle zu untersuchen:

Wann gibt es für x keine / eine / zwei Lösungen?
Mache dafür eine Fallunterscheidung und du hast deine Bedingungen an k.

MFG,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de