www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Nullstellen ganzer Funktionen
Nullstellen ganzer Funktionen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen ganzer Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:45 Mi 14.05.2014
Autor: fred97

Aufgabe
Ich bin mal wieder auf eine, so meine ich, schöne Aufgabe zum Thema "Funktionentheorie" gestoßen:

Sei [mm] $f:\IC \to \IC$ [/mm] holomorph und nicht konstant.

Man zeige: es gibt ein $c [mm] \in f(\IC)$ [/mm] so, dass die Funktion $f-c$ nur einfache Nullstellen besitzt.

Es wäre nett, wenn sich jemand aus dem Kreis der Moderatoren finden würde, der die Aufgabe in der üblichen Weise kennzeichnet.

Gruß FRED

        
Bezug
Nullstellen ganzer Funktionen: Dummy
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 Mi 14.05.2014
Autor: meili

Bitte nicht auf diese Frage antworten.
Dient nur der weiteren Sichtbarkeit, obiger Frage.

Bezug
        
Bezug
Nullstellen ganzer Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Mi 14.05.2014
Autor: Berieux

Hallo!

Ich versuche mich mal an einer Lösung.
Sei [mm]\Gamma := \{z\in \mathbb{C}: f'(z)=0\}[/mm]. Da f' holomorph ist, ist diese Menge diskret in C und damit abzählbar.
Für jedes [mm]c\in f(\mathbb{C})[/mm] setze [mm]\Gamma_{c} := \{z\in \mathbb{C}: f(z)=c \}[/mm].

Es gibt mit Sicherheit ein c, sodass [mm]\Gamma\cap \Gamma_{c}=\{ \}[/mm], denn sonst wäre [mm]\Gamma[/mm] überabzählbar. Ein solches c ist aber genau was wir suchen.

Viele Grüße,
Berieux


Edit: Anscheinend wurde mein Beitrag als Frage und nicht als Lösungsversuch gekennzeichnet. Falls es jemandem möglich ist diesen Status zu ändern, wäre ich sehr dankbar dafür.
Mir ist mal wieder nicht klar was ich falsch gemacht habe.

Bezug
                
Bezug
Nullstellen ganzer Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:30 Mi 14.05.2014
Autor: Herby

Hi,

> Edit: Anscheinend wurde mein Beitrag als Frage und nicht
> als Lösungsversuch gekennzeichnet. Falls es jemandem
> möglich ist diesen Status zu ändern, wäre ich sehr
> dankbar dafür.
> Mir ist mal wieder nicht klar was ich falsch gemacht habe.

Du hast hier nichts falsch gemacht. Deine Antwort bei Übungsaufgaben ist hier im Matheraum eine [mm] \red{\text{Frage}} [/mm] für die Aufgabe, die i.a.R. vom Aufgabensteller dann [mm] \green{\text{beantwortet}} [/mm] wird.

Grüße
Herby

Bezug
                
Bezug
Nullstellen ganzer Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Do 15.05.2014
Autor: fred97


> Hallo!
>  
> Ich versuche mich mal an einer Lösung.
>  Sei [mm]\Gamma := \{z\in \mathbb{C}: f'(z)=0\}[/mm]. Da f'
> holomorph ist, ist diese Menge diskret in C und damit
> abzählbar.
>  Für jedes [mm]c\in f(\mathbb{C})[/mm] setze [mm]\Gamma_{c} := \{z\in \mathbb{C}: f(z)=c \}[/mm].
>  
> Es gibt mit Sicherheit ein c, sodass [mm]\Gamma\cap \Gamma_{c}=\{ \}[/mm],
> denn sonst wäre [mm]\Gamma[/mm] überabzählbar. Ein solches c ist
> aber genau was wir suchen.

Ja, so kann man das machen. Du solltest vielleicht noch ein Argument ins Spiel bringen: [mm] f(\IC) [/mm] ist überabzählbar, da [mm] f(\IC) [/mm] offen ist.

FRED

>  
> Viele Grüße,
>  Berieux
>  
> Edit: Anscheinend wurde mein Beitrag als Frage und nicht
> als Lösungsversuch gekennzeichnet. Falls es jemandem
> möglich ist diesen Status zu ändern, wäre ich sehr
> dankbar dafür.
>  Mir ist mal wieder nicht klar was ich falsch gemacht habe.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de