www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Nullstellenberechnung
Nullstellenberechnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:51 So 09.01.2011
Autor: hilbert

Ich soll die Nullstelle in dem Intervall [0,1] von f(x) = [mm] \bruch{1}{8}x^2 [/mm] -x [mm] +\bruch{1}{2} [/mm] bestimmen.

Näherungsverfahren hatten wir noch nicht.
Ich habe einfach mal so angefangen:

[mm] \bruch{1}{8}x^2 [/mm] -x [mm] +\bruch{1}{2} [/mm] = 0

Substitution habe ich versucht, bin aber gescheitert.
Dann habe ich versucht den Satz von Vieta zu verwenden, das ging aber auch nicht, glaube auch, dass das ganz falsch war.

Hättet ihr nen Tipp diese Gleichung zu lösen?

Vielen Dank im Voraus.

        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Mo 10.01.2011
Autor: reverend

Hallo hilbert.

Schöner Wald hier, wenn nicht die ganzen Bäume davor stünden...

> Ich soll die Nullstelle in dem Intervall [0,1] von f(x) =
> [mm]\bruch{1}{8}x^2[/mm] -x [mm]+\bruch{1}{2}[/mm] bestimmen.
>  
> Näherungsverfahren hatten wir noch nicht.

Brauchst Du auch nicht. Obwohl die Heronsche Formel vielleicht praktisch wäre, aber nötig ist sie nicht.

>  Ich habe einfach mal so angefangen:
>  
> [mm]\bruch{1}{8}x^2[/mm] -x [mm]+\bruch{1}{2}[/mm] = 0
>  
> Substitution habe ich versucht, bin aber gescheitert.
>  Dann habe ich versucht den Satz von Vieta zu verwenden,
> das ging aber auch nicht,

Wieso nicht? Der geht doch prima.

> glaube auch, dass das ganz falsch
> war.

Nein, das war ganz richtig.

> Hättet ihr nen Tipp diese Gleichung zu lösen?

Brauchst Du gar nicht. Rechne doch nochmal mit pq-Formel oder Mitternachtsformel oder nach Vieta, alles das gleiche.

> Vielen Dank im Voraus.

Grüße
reverend


Bezug
                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Mo 10.01.2011
Autor: hilbert

Ahh, entschuldige vielmals. Das ist natürlich kein Quadrat.

Es sollte heißen f(x) = [mm] \bruch{1}{8}x^4 [/mm] - x + [mm] \bruch{1}{2} [/mm]

Lag wohl an der späten Stunde. Verzeihung.

Hast du hier einen Tipp für mich?

Bezug
                        
Bezug
Nullstellenberechnung: ach so...
Status: (Antwort) fertig Status 
Datum: 00:25 Mo 10.01.2011
Autor: reverend

Hallo nochmal,

wenn Ihr keine numerischen Näherungsverfahren hattet, ist das eine Aufgabe für Wurzelkünstler mit integriertem Coprozessor und hellseherischen Fähigkeiten.

Es gibt kein Verfahren, mit dem das lösbar wäre (außer eben Näherungsverfahren). Das heißt natürlich nicht, dass es nicht eine explizite Lösung geben kann. Nur ist sie nicht methodisch verlässlich zu finden.

Numerisch liegt die Antwort bei 0,508347425.

Grüße
reverend




Bezug
                                
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:39 Mo 10.01.2011
Autor: Sigma

Analytisch lautet die Lösung (Matheamtica),

[mm] $\frac{1}{2} \sqrt{\frac{1}{3} \sqrt[3]{864-96 \sqrt{69}}+2 \left(\frac{2}{3}\right)^{2/3} \sqrt[3]{9+\sqrt{69}}}-\frac{1}{2} [/mm]
   [mm] \sqrt{-\frac{1}{3} \sqrt[3]{864-96 \sqrt{69}}-2 \left(\frac{2}{3}\right)^{2/3} \sqrt[3]{9+\sqrt{69}}+\frac{16}{\sqrt{\frac{1}{3} \sqrt[3]{864-96 \sqrt{69}}+2 \left(\frac{2}{3}\right)^{2/3} \sqrt[3]{9+\sqrt{69}}}}}$ [/mm]

Da ist die numerische Lösung über Newton-Verfahren usw. praktischer.

Bezug
                                
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:43 Mo 10.01.2011
Autor: qsxqsx

Mein Prof hat mal gesagt es gibt Formeln für bis und inkl. Polynome 4. Grades.

Gruss

Bezug
                                        
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:46 Mo 10.01.2011
Autor: Gonozal_IX

Huhu,

tut es auch, für diese z.B. []hier.

Aber spaßig wird das trotzdem nicht ;-)

MFG,
Gono.

Bezug
                                                
Bezug
Nullstellenberechnung: oh, sorry.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:51 Mo 10.01.2011
Autor: reverend

Hallo nochmal,

da habe ich vorhin was falsch im Kopf gerechnet - ich war mir sicher, dass dies keiner der lösbaren Fälle ist.

Trotzdem überzeugt mich die analytische CAS-Lösung nicht davon, dass es sich dabei auch um die hier gesuchte handelt.

Ich bezweifle also die korrekte Aufgabenstellung.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de