www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellenbestimmung einer Fu
Nullstellenbestimmung einer Fu < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung einer Fu: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:41 Di 12.02.2013
Autor: mathefille

Aufgabe 1
Bestimme die Nullstelle der folgenden Funktion:

f(x)= [mm] x^3+x^2-7x-3 [/mm]

Aufgabe 2
Nullstellenbestimmung der Funktion:

f(x)= [mm] x^3-12x-16 [/mm]

Aufgabe 3
Finde die Nullstellen der Funktion:

[mm] x^3-12x^2+21x+98 [/mm]

Hi ihr lieben,
ich bekomme diese Augfaben nicht ganz gelöst. Vielleicht findet ihr ja meine Fehler.

Bei Aufgabe 1: f(x)= [mm] x^3+x^2-7x-3 [/mm] finde ich die erste Nullstelle nicht.
Ich habe als Kandidaten für x nach Betrachtung des absoluten Gliedes:
+-1; +-3 und habe alle eingesetzt:

f(1)= [mm] 1^3+1^2-7 [/mm] * [mm] \cdot \* [/mm] 1-3 =-9
f(-1)= [mm] (-1)^3+(-1)^2-7 [/mm] * [mm] \cdot \* [/mm] (-1)-3 = 2
f(3)= [mm] 3^3+3^2-7 [/mm] * [mm] \cdot \* [/mm] 3-3 = 12
f(-3)= [mm] (-3)^3+(-3)^2-7 [/mm] * [mm] \cdot \* [/mm] (-3)-3 =-18
Ich finde hier die erste Nullstelle irgendwie nicht.

Bei Aufgabe 2: f(x)= [mm] x^3-12x-16 [/mm]
Da habe ich als erste Nullstelle: -2
Dann habe ich die -2 mit in den Teiler gesetzt:

[mm] (x^3-12x-16) [/mm] : (x+2)= [mm] x^2+14x-28 [/mm]
[mm] -(x^3-2x^2) [/mm]
___________
          [mm] 14x^2-16 [/mm]
       [mm] -(14x^2+28x [/mm]
______________
                   -28x-16
                 -(-28x-56)

Weiter komm ich nicht.
Und bei Aufgabe 3 habe ich auch wieder -2 als Nullstelle.

[mm] (x^3-12x^2+21x+98) [/mm] : (x+2) [mm] =x^2+14x-28 [/mm]
[mm] -(x^3+2x^2) [/mm]
__________
          [mm] 14x^2+21x [/mm]
       [mm] -(14x^2+28x) [/mm]
_______________
                   -28x+21
                -(-28x-56)
_________________
                         77+98

Ja, da komme ich auch iwi nicht bis zum Schluss.
Vielleicht findet ja jemand von euch meine Fehler.
Liebe Grüße mathefille

        
Bezug
Nullstellenbestimmung einer Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Di 12.02.2013
Autor: schachuzipus

Hallo mathefille,


> Bestimme die Nullstelle der folgenden Funktion:
>  
> f(x)= [mm]x^3+x^2-7x-3[/mm]
>  Nullstellenbestimmung der Funktion:
>  
> f(x)= [mm]x^3-12x-16[/mm]
>  Finde die Nullstellen der Funktion:
>  
> [mm]x^3-12x^2+21x+98[/mm]
>  Hi ihr lieben,
>  ich bekomme diese Augfaben nicht ganz gelöst. Vielleicht
> findet ihr ja meine Fehler.
>  
> Bei Aufgabe 1: f(x)= [mm]x^3+x^2-7x-3[/mm] finde ich die erste
> Nullstelle nicht.
>  Ich habe als Kandidaten für x nach Betrachtung des
> absoluten Gliedes:
>  +-1; +-3 und habe alle eingesetzt:
>  
> f(1)= [mm]1^3+1^2-7[/mm] * [mm]\cdot \*[/mm] 1-3 =-9
>  f(-1)= [mm](-1)^3+(-1)^2-7[/mm] * [mm]\cdot \*[/mm] (-1)-3 = 2
>  f(3)= [mm]3^3+3^2-7[/mm] * [mm]\cdot \*[/mm] 3-3 = 12
>  f(-3)= [mm](-3)^3+(-3)^2-7[/mm] * [mm]\cdot \*[/mm] (-3)-3 =-18

Na, das Letzte rechne nochmal nach. Ich komme auf [mm]f(-3)=0[/mm]

>  Ich finde hier die erste Nullstelle irgendwie nicht.
>  
> Bei Aufgabe 2: f(x)= [mm]x^3-12x-16[/mm]
>  Da habe ich als erste Nullstelle: -2 [ok]
>  Dann habe ich die -2 mit in den Teiler gesetzt:
>  
> [mm](x^3-12x-16)[/mm] : (x+2)= [mm]x^2+14x-28[/mm]
>  [mm]-(x^3-2x^2)[/mm]

Nana, da muss doch [mm]-(x^3\red + \ 2x^2)[/mm] stehen, es ist doch [mm](x+2)\cdot{}x^2=x^3+2x^2[/mm]

>  ___________
>            [mm]14x^2-16[/mm]
>         [mm]-(14x^2+28x[/mm]
>  ______________
>                     -28x-16
>                   -(-28x-56)
>  
> Weiter komm ich nicht.
>  Und bei Aufgabe 3 habe ich auch wieder -2 als Nullstelle. [ok]
>  
> [mm](x^3-12x^2+21x+98)[/mm] : (x+2) [mm]=x^2+14x-28[/mm]
>  [mm]-(x^3+2x^2)[/mm]
>  __________
>            [mm]14x^2+21x[/mm] [notok]

Minusklammern sind nicht dein Ding ;-)

Es ist [mm]x^3-12x^2-(x^3+2x^2)=x^3-12x^2-x^3-2x^2=-14x^2[/mm]

Musst du nochmal rechnen ...


>         [mm]-(14x^2+28x)[/mm]
>  _______________
>                     -28x+21



>                  -(-28x-56)
>  _________________
>                           77+98
>  
> Ja, da komme ich auch iwi nicht bis zum Schluss.
>  Vielleicht findet ja jemand von euch meine Fehler.
>  Liebe Grüße mathefille

Gruß

schachuzipus


Bezug
                
Bezug
Nullstellenbestimmung einer Fu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mi 20.02.2013
Autor: mathefille

Danke dir :D. Ich versuchs oft 3mal nach zu rechnen, aber Vorzeichenfehler sind häufige Fehler, also nochmal  Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de