www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Nullstellenbestimmung von f(x)
Nullstellenbestimmung von f(x) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung von f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mo 12.04.2010
Autor: Good123

Aufgabe
f(x)= [mm] -3x-7+\bruch{4}{x^2} [/mm]

Hey Leute,
ich muss bei dieser Aufgabe die Fläche des Graphen ausrechnen, dafür muss ich ja erstmal die Nullstellen bestimmen um die Grenzen zu bestimmen. Jedoch fängt da mein Problem.Normalerweiße würde man die Funktion ja ausklammern aber das x² unter dem Bruchstrich stört mich. Ich weiß nicht wie ich da vorgehen soll.
Mein GrafikfähigerTaschenrechner zeigt mir Nullstellen bei -1 und -2 an, jedoch möchte ich dies selber errechnen.

Ich habe einen Ansatz: und zwar rechnet man *x²
dann hat man stehen : f(x)= -3x³-7x²+4

aber sonderlich gut ausklammern kann man diese Funtkion ja auch nicht...
Vielen dank schonmal
MFG

        
Bezug
Nullstellenbestimmung von f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 12.04.2010
Autor: Jeezer

ja der Ansatz ist shconmal richtig.
also du hast 0=-3x³-7x²+4

um die Lösungsmenge zu bestimmen musst du nun (blöderweise) eine Lösung eraten anders gehts nicht weiter...
aber da hat dir ja der gtr schon weitergeholfen.
-1 ist zb eine lösung

jetzt kannste eine Polynomdivision durhcführen also
(-3x³-7x²+4): (x+1)

die nullstellen vom ergebnis sind dann deine weiteren 2 Nullstellen.


Bezug
                
Bezug
Nullstellenbestimmung von f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Mo 12.04.2010
Autor: Good123

achso also war die umformung mit [mm] *x^2 [/mm] richtig?
ok also einen anderen weg außer der polynomdiviosin gibt es dann nicht oder wie?
und wenn jetzt bei der 4 noch ein x stehen würde also f(x)= -3x³-7x²+4x
dann könnte ich es ja auch ausmultiplizieren oder?

danke vielmals

Bezug
                        
Bezug
Nullstellenbestimmung von f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Mo 12.04.2010
Autor: steppenhahn

Hallo!

> achso also war die umformung mit [mm]*x^2[/mm] richtig?

Ja.
Achte aber darauf, dass selbst wenn du auf x = 0 als eine Lösung kommst, dies natürlich keine Lösung sein kann.

>  ok also einen anderen weg außer der polynomdiviosin gibt
> es dann nicht oder wie?

Nein, die musst du jetzt machen. Außer der GTR verrät dir auch noch die restlichen zwei Nullstellen und sie sind schön ganzzahlig, oder du sollst sie nur mit dem GTR ermitteln.

>  und wenn jetzt bei der 4 noch ein x stehen würde also
> f(x)= -3x³-7x²+4x
>  dann könnte ich es ja auch ausmultiplizieren oder?

Du meinst ausklammern.
Genau, dann könntest du ein x ausklammern:

$f(x)= [mm] -3x^{3}-7x^{2}+4x [/mm] = [mm] x*(-3x^{2}-7x+4)$, [/mm]

eine Lösung wäre dann sofort x = 0, die restlichen beiden erhältst du durch das Lösen der quadratischen Gleichung.

Grüße,
Stefan

Bezug
                                
Bezug
Nullstellenbestimmung von f(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mo 12.04.2010
Autor: Good123

jaa genau meinte ausklammern

vielen daaank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de