www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Nullteiler
Nullteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Fr 20.11.2009
Autor: bolzen

Aufgabe 1
Sei R kommutativer Ring, R[x] Polynomring.
Beweise:
Ist [mm] f\in [/mm] R[x] Nullteiler, gibt es ein a [mm] \in [/mm] R\ [mm] \{0\} [/mm] mit a*f=0

Aufgabe 2
Beweise:
Ist f [mm] \in [/mm] R[x] nilpotent sind alle Koeffizienten nilpotent.

Ich hab den Beweis für beides schon fertig, aber muss unbedingt wissen ob die auch stimmen.

Aufgabe 1
Seien [mm] f=a_{0}+...+a_{n}x^n [/mm]  und [mm] g=b_{0}+...+b_{k}x^k [/mm] Polynome mit f*g=0 und [mm] g\not= [/mm] 0
Entweder ist f das Nullpolynom, dann kann a beliebig gewählt werden, oder f ist nicht das Nullpolynom. Dann ist aber R endlich.

[mm] f*g=b_{0}f+b_{1}f+...+b_{k}f=0 [/mm]
Also muss auch jeweils [mm] b_{i}f= [/mm] 0, da jedes Produkt unterschiedlichen Grades ist und daher nicht addier werden kann.

Setzte [mm] a=\produkt_{i=0}^{k}b_{i} [/mm]

fertig


Aufgabe 2

Induktion

Induktionsanfang
deg(f)=0
[mm] f_0^k=0=a_0^k [/mm] erfüllt

IS: deg(f)=n+1
[mm] f_{n+1}^k=(a_0+....+a_{n+1}x^{n+1})^k=0 [/mm]
lässt sich auch schreiben als:
[mm] 0=(a_{n+1}x^{n+1})^k+.... [/mm]
und die .... kann man nicht mit dem Rest addieren, weil [mm] in(a_{n+1}x^{n+1})^k [/mm] ein x mehr "drinsteckt" also muss auch [mm] a_{n+1}^k=0 [/mm]

fertig





        
Bezug
Nullteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 05:16 Sa 21.11.2009
Autor: felixf

Hallo!

> Sei R kommutativer Ring, R[x] Polynomring.
>  Beweise:
>  Ist [mm]f\in[/mm] R[x] Nullteiler, gibt es ein a [mm]\in[/mm] R\ [mm]\{0\}[/mm] mit
> a*f=0
>
>  Beweise:
>  Ist f [mm]\in[/mm] R[x] nilpotent sind alle Koeffizienten
> nilpotent.
>
>  Ich hab den Beweis für beides schon fertig, aber muss
> unbedingt wissen ob die auch stimmen.
>  
> Aufgabe 1
>  Seien [mm]f=a_{0}+...+a_{n}x^n[/mm]  und [mm]g=b_{0}+...+b_{k}x^k[/mm]
> Polynome mit f*g=0 und [mm]g\not=[/mm] 0
>  Entweder ist f das Nullpolynom, dann kann a beliebig
> gewählt werden, oder f ist nicht das Nullpolynom. Dann ist
> aber R endlich.

Wieso sollte dann $R$ endlich sein?!?

> [mm]f*g=b_{0}f+b_{1}f+...+b_{k}f=0[/mm]

Da fehlen die $x$-Potenzen!

>  Also muss auch jeweils [mm]b_{i}f=[/mm] 0, da jedes Produkt
> unterschiedlichen Grades ist und daher nicht addier werden
> kann.

Was genau willst du damit sagen? Ich hab grosse Zweifel, dass [mm] $b_i [/mm] f = 0$ folgt.

> Setzte [mm]a=\produkt_{i=0}^{k}b_{i}[/mm]
>  
> fertig

Warum sollte $a [mm] \neq [/mm] 0$ sein?

> Aufgabe 2
>  
> Induktion

Wonach?

> Induktionsanfang
>  deg(f)=0
>  [mm]f_0^k=0=a_0^k[/mm] erfüllt

Ja.

> IS: deg(f)=n+1
>  [mm]f_{n+1}^k=(a_0+....+a_{n+1}x^{n+1})^k=0[/mm]
>  lässt sich auch schreiben als:
>  [mm]0=(a_{n+1}x^{n+1})^k+....[/mm]
>  und die .... kann man nicht mit dem Rest addieren, weil
> [mm]in(a_{n+1}x^{n+1})^k[/mm] ein x mehr "drinsteckt" also muss auch
> [mm]a_{n+1}^k=0[/mm]

?!? Wieso kann man da nichts addieren? Das ist ziemlicher Quark.

Ausserdem: in deinem "Induktionsschritt" verwendest du nicht die Induktionsvoraussetzung.


Tipp: sind $a, b$ nilpotent und gilt $a b = b a$, so ist $a + b$ nilpotent. Ueberleg dir das mal.

Dann kannst du im Induktionsschritt $f = [mm] a_{n+1} x^{n+1} [/mm] + [mm] \hat{f}$ [/mm] schreiben mit [mm] $\deg \hat{f} \le [/mm] n$; wegen [mm] $f^k [/mm] = [mm] a_{n+1} x^{k (n + 1)} [/mm] + [mm] \text{Terme niedrigerer Ordnung}$ [/mm] folgt [mm] $a_{n+1}$ [/mm] nilpotent, womit auch [mm] $a_{n+1} x^{n+1}$ [/mm] und somit [mm] $\hat{f} [/mm] = f - [mm] a_{n+1} x^{n+1}$ [/mm] nilpotent ist. Nach Induktionsvoraussetzung ist [mm] $\hat{f}$ [/mm] von der passenden Form, und schon bist du fertig.

LG Felix


Bezug
                
Bezug
Nullteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Sa 21.11.2009
Autor: bolzen


> > Aufgabe 1
>  >  Seien [mm]f=a_{0}+...+a_{n}x^n[/mm]  und [mm]g=b_{0}+...+b_{k}x^k[/mm]
> > Polynome mit f*g=0 und [mm]g\not=[/mm] 0
>  >  Entweder ist f das Nullpolynom, dann kann a beliebig
> > gewählt werden, oder f ist nicht das Nullpolynom. Dann ist
> > aber R endlich.
>  
> Wieso sollte dann [mm]R[/mm] endlich sein?!?

Also wenn f nicht das Nullpolynom ist, muss R endlich sein, denn ansonsten ist keine Zahl a aus R für [mm] a^n=0. [/mm]

>  
> > [mm]f*g=b_{0}f+b_{1}f+...+b_{k}f=0[/mm]
>  
> Da fehlen die [mm]x[/mm]-Potenzen!
>  
> >  Also muss auch jeweils [mm]b_{i}f=[/mm] 0, da jedes Produkt

> > unterschiedlichen Grades ist und daher nicht addier werden
> > kann.
>  
> Was genau willst du damit sagen? Ich hab grosse Zweifel,
> dass [mm]b_i f = 0[/mm] folgt.

Damit will ich sagen, dass in jedem Summanden x einen unterschiedlichen grad hat. Im ersten zB von [mm] x^1 [/mm] bis [mm] x^n. [/mm] also kann ich die einzeln nicht addieren.

>  
> > Setzte [mm]a=\produkt_{i=0}^{k}b_{i}[/mm]
>  >  
> > fertig
>  
> Warum sollte [mm]a \neq 0[/mm] sein?

das [mm] a\neq [/mm] 0 ist steht in der Aufgabe.

>  
> > Aufgabe 2
>  >  
> > Induktion
>  
> Wonach?

nach dem grad des polynoms.

>  
> > Induktionsanfang
>  >  deg(f)=0
>  >  [mm]f_0^k=0=a_0^k[/mm] erfüllt
>  
> Ja.
>  
> > IS: deg(f)=n+1
>  >  [mm]f_{n+1}^k=(a_0+....+a_{n+1}x^{n+1})^k=0[/mm]
>  >  lässt sich auch schreiben als:
>  >  [mm]0=(a_{n+1}x^{n+1})^k+....[/mm]
>  >  und die .... kann man nicht mit dem Rest addieren, weil
> > [mm]in(a_{n+1}x^{n+1})^k[/mm] ein x mehr "drinsteckt" also muss auch
> > [mm]a_{n+1}^k=0[/mm]
>  
> ?!? Wieso kann man da nichts addieren? Das ist ziemlicher
> Quark.
>  

Genauso wie bei dem ersten Teil.

> Ausserdem: in deinem "Induktionsschritt" verwendest du
> nicht die Induktionsvoraussetzung.

Aer ich verwende doch, dass für ein Polynom vom grad n auch alle koeffizienten nilpotent sind.

>  
>


Bezug
                        
Bezug
Nullteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 04:52 So 22.11.2009
Autor: felixf

Hallo!

> > > Aufgabe 1
>  >  >  Seien [mm]f=a_{0}+...+a_{n}x^n[/mm]  und [mm]g=b_{0}+...+b_{k}x^k[/mm]
> > > Polynome mit f*g=0 und [mm]g\not=[/mm] 0
>  >  >  Entweder ist f das Nullpolynom, dann kann a beliebig
> > > gewählt werden, oder f ist nicht das Nullpolynom. Dann ist
> > > aber R endlich.
>  >  
> > Wieso sollte dann [mm]R[/mm] endlich sein?!?
>  
> Also wenn f nicht das Nullpolynom ist, muss R endlich sein,
> denn ansonsten ist keine Zahl a aus R für [mm]a^n=0.[/mm]

Wieso das?!

Im Ring $K = [mm] \IR[x]/(x^2)$ [/mm] ist die Restklasse von $x$ nilpotent, und dieser Ring umfasst unendlich viele Elemente.

> > > [mm]f*g=b_{0}f+b_{1}f+...+b_{k}f=0[/mm]
>  >  
> > Da fehlen die [mm]x[/mm]-Potenzen!
>  >  
> > >  Also muss auch jeweils [mm]b_{i}f=[/mm] 0, da jedes Produkt

> > > unterschiedlichen Grades ist und daher nicht addier werden
> > > kann.
>  >  
> > Was genau willst du damit sagen? Ich hab grosse Zweifel,
> > dass [mm]b_i f = 0[/mm] folgt.
>  
> Damit will ich sagen, dass in jedem Summanden x einen
> unterschiedlichen grad hat. Im ersten zB von [mm]x^1[/mm] bis [mm]x^n.[/mm]
> also kann ich die einzeln nicht addieren.

Addieren kann man die sehr wohl. Du meinst sowas wie Zusammenfassen oder Ausklammern.

> > > Setzte [mm]a=\produkt_{i=0}^{k}b_{i}[/mm]
>  >  >  
> > > fertig
>  >  
> > Warum sollte [mm]a \neq 0[/mm] sein?
>
>  das [mm]a\neq[/mm] 0 ist steht in der Aufgabe.

Ja. Du sollst zeigen, dass es ein $a [mm] \neq [/mm] 0$ ist mit $a f = 0$. Bisher hast du nur ein $a$ angegeben, aber weder gezeigt dass $a [mm] \neq [/mm] 0$ ist noch dass $a f = 0$ ist.

> > > Aufgabe 2
>  >  >  
> > > Induktion
>  >  
> > Wonach?
>  nach dem grad des polynoms.

Sowas musst du auch dabei schreiben. Nur weil manchen Lesern (wie mir) das klar ist, ist das noch nicht allen klar.

>  > Ausserdem: in deinem "Induktionsschritt" verwendest du

> > nicht die Induktionsvoraussetzung.
>
>  Aer ich verwende doch, dass für ein Polynom vom grad n
> auch alle koeffizienten nilpotent sind.

Nein, das tust du nicht. Zumindest hast du nichts davon hingeschrieben.

LG Felix


Bezug
                                
Bezug
Nullteiler: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:53 So 22.11.2009
Autor: bolzen

Ich habe jetzt Aufgabe 2 mit dem Tipp aus der ersten Antwort gelöst. Danke dafür.
Aber hat jemand eine Tipp für mich was die Aufgabe 1 angeht?

Bezug
                                        
Bezug
Nullteiler: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 23.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de