www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Nur noch einmal Substitution
Nur noch einmal Substitution < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nur noch einmal Substitution: kriege es nicht hin
Status: (Frage) beantwortet Status 
Datum: 19:47 Di 27.09.2005
Autor: Asterobix

ich verstehe es nicht, ich mache doch alles richtig und kommt trotzdem blödsinn raus ...


[mm] \integral {x/(ax^2+b) dx} [/mm]


so, nun einfach u= [mm] ax^2+b [/mm] gesetzt


-> x = ( [mm] (u-b)/a)^1/2 [/mm]

---> dx = 1/2a * (1/a * u - 1/a * b)^-1/2


--->  [mm] \integral [/mm] {x/(2a*sqrt((u-b)/a)  du}


Nun muss ich ja ein zweites mal substituieren:

also:   v= 2a * sqrt((u-b)/a)

->  u = [mm] v^2/4a [/mm] + b


also :

[mm] \integral [/mm] {x/v)  * 1/4a dv}

in diesem fall ist ja x/4a eine konstante und deswegen gilt :

x/4a*  [mm] \integral [/mm] {1/v)  dv}


durch "ausintegrieren" und  einsetzen von v und u , ergibt sich dann die Stammfunktion :

----> x/4a * ln (2x)

da diese leider falsch ist, hoffe ich das mir jemand sagen kann wo ich einen fehler gemacht habe, ich bin am ende mit meinen nerven....

        
Bezug
Nur noch einmal Substitution: My way ...
Status: (Antwort) fertig Status 
Datum: 19:56 Di 27.09.2005
Autor: Loddar

Hallo Asterobix!


Remember ... wir haben hier doch fast die Ableitung des Nenners als Faktor dastehen:

[mm] $\integral{\bruch{x}{ax^2+b} \ dx} [/mm] \ = \ [mm] \bruch{1}{2a} [/mm] * [mm] \integral{2ax*\bruch{1}{ax^2+b} \ dx}$ [/mm]


Und nun Deine gewählte Substitution sowie die Umformung mit $dx_$ einsetzen.

Du weißt doch :  "My way ..." ;-)


Gruß
Loddar


Bezug
                
Bezug
Nur noch einmal Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Di 27.09.2005
Autor: Asterobix

hmm ok thx, dachte es geht nur, wenn exakt die ableitung dort steht

Bezug
                        
Bezug
Nur noch einmal Substitution: Genauer hinsehen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Di 27.09.2005
Autor: Loddar

Hallo Asterobix!


> dachte es geht nur, wenn exakt die ableitung dort steht

Wie Du siehst, lohnt es auf jeden Fall auch genauer hinzusehen, wenn schon Ähnlichkeit mit der Ableitung vorhanden sind.

Das klappt nicht immer! Aber wenn nur ein konstanter Faktor fehlt, sollte das wohl machbar sein.


Gruß
Loddar


Bezug
        
Bezug
Nur noch einmal Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Di 27.09.2005
Autor: epikur57

  [mm] \integral_{}^{} {\bruch{x}{ax^{2}+b} dx} [/mm] =   [mm] \bruch{1}{2a} [/mm] * [mm] \integral_{}^{} {\bruch{2ax}{ ax^{2}+b} dx} [/mm] =  [mm] \bruch{1}{2a} [/mm] * [mm] ln(ax^{2}+b) [/mm]    (die Betragsstriche nicht vergessen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de