www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - ONB und selbstadjungierte Abb.
ONB und selbstadjungierte Abb. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ONB und selbstadjungierte Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 So 26.09.2010
Autor: m0ppel

Aufgabe
Betrachte auf dem [mm]\IR-VR [/mm] den [mm] \IR^3 [/mm] die Bilinearform  [mm] \* [/mm] definiert durch [mm](x_{1},x_{2},x_{3}) \* (y_{1},y_{2},y_{3})= 3x_{1}y_{1}+ x_{1}y_{3}+2x_{2}y_{2}+x_{3}y_{1}+3x_{3}y_{3}[/mm]

1) Bestimmen Sie die Strukturmatrix von [mm] \* [/mm] !
2) Zeige, dass [mm] \* [/mm] ein Skalarprodukt ist.
3) Bestimmen Sie eine Orthonormalbasis des von [mm](1,0,0)[/mm] und [mm](0,1,0)[/mm] erzeugten Unterraum.
4) Ist der Endomorphismus [mm] \phi [/mm] definiert durch die Matrix A zur Basis B: A= [mm] \pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 } [/mm]


1) Nach meinen Berechnungen lautet die Strukturmatrix S = [mm] \pmat{ 3 & 0 & 1\\ 0 & 2 & 0 \\ 1 & 0 & 3 } [/mm]

2) Wenn die Strukturmatrix positiv definit und hermitisch ist, dann ist [mm] \* [/mm] ein Skalarprodukt:
   a) hermitisch
       [mm] \overline{S}^T [/mm] = S , da alle Einträge von S aus [mm] \IR [/mm] stammen, reicht zu zeigen: [mm] S^T [/mm] = S
       Dies gilt.
   b) positiv definit heißt alle Eigenwert sind positiv: Eigenwerte sind 2 und 4  
3)
   ich nehme mir hier den ersten Vektor und Normiere ihn, wobei ich das vorgegebene Skalarprodukt benutzen muss:
   das heißt: [mm] |\vektor{1 \\ 0 \\ 0}| [/mm] = [mm] \wurzel{\vektor{1 \\ 0 \\ 0}\* \vektor{1 \\ 0 \\ 0}} [/mm] = [mm] \wurzel{3} [/mm]
   dann wäre mein erster Basisvektor: [mm] \vektor{\bruch{1}{\wurzel{3}} \\ 0 \\ 0} [/mm]
   und der zweite: [mm] \vektor{0 \\ \bruch{1}{\wurzel{2}} \\ 0} [/mm]
ist das so richtig?

4) muss ich das so zeigen?
    selbstadjungiert: [mm] \phi(\overrightarrow{x})\* \overrightarrow{y}= \overrightarrow{x} \* \phi(\overrightarrow{y}) [/mm]

Liebe Grüße

        
Bezug
ONB und selbstadjungierte Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:28 So 26.09.2010
Autor: angela.h.b.


> Betrachte auf dem [mm]\IR-VR[/mm] den [mm]\IR^3[/mm] die Bilinearform  [mm]\*[/mm]
> definiert durch [mm](x_{1},x_{2},x_{3}) \* (y_{1},y_{2},y_{3})= 3x_{1}y_{1}+ x_{1}y_{3}+2x_{2}y_{2}+x_{3}y_{1}+3x_{3}y_{3}[/mm]
>  
> 1) Bestimmen Sie die Strukturmatrix von [mm]\*[/mm] !
>  2) Zeige, dass [mm]\*[/mm] ein Skalarprodukt ist.
> 3) Bestimmen Sie eine Orthonormalbasis des von [mm](1,0,0)[/mm] und
> [mm](0,1,0)[/mm] erzeugten Unterraum.
>  4) Ist der Endomorphismus [mm]\phi[/mm] definiert durch die Matrix
> A zur Basis B: A= [mm]\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 }[/mm]
>  
> 1) Nach meinen Berechnungen lautet die Strukturmatrix S =
> [mm]\pmat{ 3 & 0 & 1\\ 0 & 2 & 0 \\ 1 & 0 & 3 }[/mm]
>  
> 2) Wenn die Strukturmatrix positiv definit und hermitisch
> ist, dann ist [mm]\*[/mm] ein Skalarprodukt:
>     a) hermitisch
> [mm]\overline{S}^T[/mm] = S , da alle Einträge von S aus [mm]\IR[/mm]
> stammen, reicht zu zeigen: [mm]S^T[/mm] = S
>         Dies gilt.
>     b) positiv definit heißt alle Eigenwert sind positiv:
> Eigenwerte sind 2 und 4  
> 3)
> ich nehme mir hier den ersten Vektor und Normiere ihn,
> wobei ich das vorgegebene Skalarprodukt benutzen muss:
> das heißt: [mm]|\vektor{1 \\ 0 \\ 0}|[/mm] = [mm]\wurzel{\vektor{1 \\ 0 \\ 0}\* \vektor{1 \\ 0 \\ 0}}[/mm]
> = [mm]\wurzel{3}[/mm]
>     dann wäre mein erster Basisvektor:
> [mm]\vektor{\bruch{1}{\wurzel{3}} \\ 0 \\ 0}[/mm]
>     und der
> zweite: [mm]\vektor{0 \\ \bruch{1}{\wurzel{2}} \\ 0}[/mm]
>  ist das
> so richtig?

Hallo,

bisher noch. Nun bräuchte man noch den dritten Vektor der ONB.

>  
> 4) muss ich das so zeigen?
> selbstadjungiert: [mm]\phi(\overrightarrow{x})\* \overrightarrow{y}= \overrightarrow{x} \* \phi(\overrightarrow{y})[/mm]

Ja.

Gruß v. Angela

>  
> Liebe Grüße


Bezug
                
Bezug
ONB und selbstadjungierte Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 So 26.09.2010
Autor: m0ppel

  
> > 3)
> > ich nehme mir hier den ersten Vektor und Normiere ihn,
> > wobei ich das vorgegebene Skalarprodukt benutzen muss:
> > das heißt: [mm]|\vektor{1 \\ 0 \\ 0}|[/mm] = [mm]\wurzel{\vektor{1 \\ 0 \\ 0}\* \vektor{1 \\ 0 \\ 0}}[/mm]
> > = [mm]\wurzel{3}[/mm]
>  >     dann wäre mein erster Basisvektor:
> > [mm]\vektor{\bruch{1}{\wurzel{3}} \\ 0 \\ 0}[/mm]
>  >     und der
> > zweite: [mm]\vektor{0 \\ \bruch{1}{\wurzel{2}} \\ 0}[/mm]
>  >  
> ist das
>  > so richtig?

>  
> Hallo,
>  
> bisher noch. Nun bräuchte man noch den dritten Vektor der
> ONB.


In der Aufgabenstellung steht doch, dass der Unterraum nur durch zwei Vektoren aufgespannt wird. Daher muss er doch die Dimension 2 haben, oder? Also warum brauche ich dann hier noch ein dritten Vektor?

Liebe Grüße
m0ppel

Bezug
                        
Bezug
ONB und selbstadjungierte Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 26.09.2010
Autor: angela.h.b.


> > > 3)
> > > ich nehme mir hier den ersten Vektor und Normiere ihn,
> > > wobei ich das vorgegebene Skalarprodukt benutzen muss:
> > > das heißt: [mm]|\vektor{1 \\ 0 \\ 0}|[/mm] =
> [mm]\wurzel{\vektor{1 \\ 0 \\ 0}\* \vektor{1 \\ 0 \\ 0}}[/mm]
> > > = [mm]\wurzel{3}[/mm]
>  >  >     dann wäre mein erster Basisvektor:
> > > [mm]\vektor{\bruch{1}{\wurzel{3}} \\ 0 \\ 0}[/mm]
>  >  >    
> und der
> > > zweite: [mm]\vektor{0 \\ \bruch{1}{\wurzel{2}} \\ 0}[/mm]
>  >  
> >  

> > ist das
>  >  > so richtig?

>  >  
> > Hallo,
>  >  
> > bisher noch. Nun bräuchte man noch den dritten Vektor der
> > ONB.
>  
>
> In der Aufgabenstellung steht doch, dass der Unterraum nur
> durch zwei Vektoren aufgespannt wird. Daher muss er doch
> die Dimension 2 haben, oder? Also warum brauche ich dann
> hier noch ein dritten Vektor?

Hallo,

für nichts.
Ich hatte die Aufgabe offensichtlich nicht durchgelesen und wollte, daß Du eine ONB des [mm] \IR^3 [/mm] suchst.

Gruß v. Angela

>  
> Liebe Grüße
> m0ppel


Bezug
                
Bezug
ONB und selbstadjungierte Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 Mo 27.09.2010
Autor: m0ppel

Zur Aufgabe 4)
Aufgabe:  Ist der Endomorphismus [mm]\phi[/mm] definiert durch die Matrix A zur Basis B: A= [mm]\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 }[/mm] selbstadjungiert bzgl. des definierten Skalarprodukt?

Wie ich schon sagte, kann ich das so zeigen:
       selbstadjungiert: [mm]\phi(\overrightarrow{x})\* \overrightarrow{y}= \overrightarrow{x} \* \phi(\overrightarrow{y})[/mm]

Allerdings weiß ich, dass ich eine selbstadjungierte Abbildung auch nachweisen kann, indem ich folgenden Satz anwende:
Sei X ein Prähilbertraum endlicher Dimension, B Orthonormalbasis und [mm]\phi: X \to X[/mm] Endomorphismus mit [mm] \phi [/mm] zur Basis B ist A. Dann gilt [mm] \phi [/mm] selbstadjungiert  [mm] \gdw [/mm] A hermitische Matrix

Ich denke, dass in meinem Fall ein Prähilbertraum vorhanden ist, weil wir im [mm] \IR^3 [/mm] agieren und ein Skalarprodukt zugrunde liegt. (welches in den vorigen Aufgaben gezeigt wurde)
Des weiteren wurde erwähnt, dass B eine kanonische Basis ist. jedoch denke ich hier, dass bei dem vorliegendem Skalarprodukt die kanonische Basis keine ONB ist, richtig?

Kann ich daher dieses Satz hier nicht anwenden? und wenn doch, dann wird doch das Skalarprodukt gar nicht beachtet, oder?

Sry für den langen Text und danke schon mal für die Hilfe!

Bezug
                        
Bezug
ONB und selbstadjungierte Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:11 Mo 27.09.2010
Autor: angela.h.b.


> Zur Aufgabe 4)
>  Aufgabe:  Ist der Endomorphismus [mm]\phi[/mm] definiert durch die
> Matrix A zur Basis B: A= [mm]\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 }[/mm]
> selbstadjungiert bzgl. des definierten Skalarprodukt?
>  
> Wie ich schon sagte, kann ich das so zeigen:
>         selbstadjungiert: [mm]\phi(\overrightarrow{x})\* \overrightarrow{y}= \overrightarrow{x} \* \phi(\overrightarrow{y})[/mm]
>  
> Allerdings weiß ich, dass ich eine selbstadjungierte
> Abbildung auch nachweisen kann, indem ich folgenden Satz
> anwende:
>  Sei X ein Prähilbertraum endlicher Dimension, B
> Orthonormalbasis und [mm]\phi: X \to X[/mm] Endomorphismus mit [mm]\phi[/mm]
> zur Basis B ist A. Dann gilt [mm]\phi[/mm] selbstadjungiert  [mm]\gdw[/mm] A
> hermitische Matrix
>
> Ich denke, dass in meinem Fall ein Prähilbertraum
> vorhanden ist, weil wir im [mm]\IR^3[/mm] agieren und ein
> Skalarprodukt zugrunde liegt. (welches in den vorigen
> Aufgaben gezeigt wurde)

Hallo,

>  Des weiteren wurde erwähnt, dass B eine kanonische Basis
> ist.

Aha, das hast Du bisher verheimlicht.
Was ist mit "eine" kanonische Basis gemeint? Die Standardbasis des [mm] \IR^3? [/mm]

> jedoch denke ich hier, dass bei dem vorliegendem
> Skalarprodukt die kanonische Basis keine ONB ist, richtig?

Richtig.

>  
> Kann ich daher dieses Satz hier nicht anwenden?

Genau.

> und wenn
> doch, dann wird doch das Skalarprodukt gar nicht beachtet,
> oder?

Wenn man mit einer ONB arbeitet, dann ist das Skalarprodukt ja in die Orthonormierung "eingearbeitet", es wird also doch beachtet.

Gruß v. Angela


Bezug
        
Bezug
ONB und selbstadjungierte Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 27.09.2010
Autor: m0ppel

Aufgabe
Betrachtet wird der [mm] \IR [/mm] -VR [mm] \IR^3 [/mm]
Ist der Endomorphismus [mm] \phi [/mm] definiert durch [mm] \phi \to [/mm] A [mm] =\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 }, [/mm] wobei die kanonische Basis zugrunde liegt, bzgl. des Skalarprodukt [mm] (x_{1},x_{2},x_{3}) \*(y_{1},y_{2},y_{3}) [/mm] = [mm] 3x_{1}y_{1} [/mm] + [mm] x_{1}y_{3} [/mm] + [mm] 2x_{2}y_{2} [/mm] + [mm] x_{3}y_{1} [/mm] + [mm] 3x_{3}y_{3} [/mm] eine selbstadjungierte Abbildung?

Hinweis: Strukturmatrix des Skalarprodukts ist S= [mm] \pmat{ 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 } [/mm]

Ich weiß, dass ich nicht einfach nur nachweisen kann, dass A eine hermitische Matrix ist, da keine Orthonormalbasis zugrunde liegt.
Also müsste ich das ja so zeigen:

[mm] \phi(\overrightarrow{x})* \overrightarrow{y}= \overrightarrow{x} [/mm] * [mm] \phi(\overrightarrow{y}) [/mm]

[mm] \gdw (\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 }* \vektor{x_{1} \\ x_{2} \\ x_{3}})*\pmat{ 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 }*\vektor{y_{1} \\ y_{2} \\ y_{3}}=(x_{1} \\ x_{2} \\ x_{3})*\pmat{ 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 }*(\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 }*\vektor{y_{1} \\ y_{2} \\ y_{3}}) [/mm]
[mm] \gdw (x_{1}+x_{3} [/mm] , [mm] x_{2}+x_{3} [/mm] , [mm] x_{1}+x_{2}+2x_{3})*\pmat{ 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 }*\vektor{y_{1} \\ y_{2} \\ y_{3}}=(x_{1} \\ x_{2} \\ x_{3})*\pmat{ 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 }*\vektor{y_{1}+y_{3} \\ y_{2}+y_{3} \\ y_{1}+y_{2}+2y_{3}} [/mm]
[mm] \gdw \vektor{4x_{1}+x_{2}+5x_{3} \\ 2x_{2}+2x_{3} \\ 4x_{1}+3x_{2}+7x_{3}}*\vektor{y_{1} \\ y_{2} \\ y_{3}}=\vektor{3x_{1}+x_{3} \\ 2x_{2} \\ x_{1}+3x_{3}}*\vektor{y_{1}+y_{3} \\ y_{2}+y_{3} \\ y_{1}+y_{2}+2y_{3}} [/mm] hier bin ich mir bei der Form nicht ganz sicher!
[mm] \gdw y_{1}(4x_{1}+x_{2}+5x_{3})+y_{2}(2x_{2}+2x_{3}) [/mm] + [mm] y_{3}(4x_{1}+3x_{2}+7x_{3})=y_{1}(4x_{1}+4x_{3})+y_{2}(x_{1}+2x_{2}+3x_{3})+y_{3}(5x_{1}+2x_{2}+7x_{3}) [/mm]

Also liegt hier keine selbstadjungierte Abbildung vor.
Stimmt das?
Und kann ich das nicht auch irgendwie kürzer zeigen? Dies ist nämlich eine Klausuraufgabe und ich kann mir nicht vorstellen, dass ich soviel Zeit in eine Teilaufgabe stecken soll.

Vielen Dank für die Hilfe
m0ppel

Bezug
                
Bezug
ONB und selbstadjungierte Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mo 27.09.2010
Autor: angela.h.b.

Hallo,

nachgerechnet habe ich nichts.
Du fragtest nach Alternativen.

Mit dem von Dir früher am Tag zitierten Satz sollte es ja auch funktionieren, sofern Du eine ONB ermitteltst und dann die darstellende Matrix bzgl dieser ONB aufschreibst.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de