www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Ober- und Untersumme
Ober- und Untersumme < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ober- und Untersumme: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 01.02.2011
Autor: Ersty

Aufgabe
[mm] \integral_{1}^{3}{(x-1) dx} [/mm] berechne dieses Integral mit der Definition 1 + 2 + 3 + ... + n = [mm] \bruch{n(n+1)}{2} [/mm]

(Lösung ist 1)

Hi, ich bin ziemlich raus aus dem Thema Ober und Untersumme, habe aber noch etwas Restwissen aus der Schule!

Ich habe es versucht auszurechnen, mache aber anscheinend Rechenfehler, könntet ihr mir vlt sagen, wo ich falsch liege, ich wäre euch sehr dankbar!

Auf gehts:

Zerlegung in 1, 1+1*2/n, 1+2*2/n, ... , 1+(n-1)*2/n, 1+n *2/n

[mm] \Delta [/mm] x = 2/n

Die Untersumme berechnet sich folgendermaßen:
U = [mm] \Delta [/mm] x * f(1) + [mm] \Delta [/mm] x * f(1+1*2/n) +...+ [mm] \Delta [/mm] x * f(1+(n-1)*2/n)

jetzt kann ich [mm] \Delta [/mm] x rausziehen:

U = [mm] \Delta [/mm] x * [ f(1) + ... + f(1+(n-1)*2/n)]

Werte einsetzen:

U = 2/n * [ 0 + (1+ 2/n -1) + ... + (1+(n-1)*2/n -1) ]   (#)

ist das richtig bis hierher?

jetzt ausrechnen, und da bin ich mir nicht sicher, ob das korrekt ist:

U = 2/n * [ 2/n + 2*2/n + ... + (n-1)*2/n ]

jetzt 2/n ausklammern oder bei (#) nicht ausrechnen, sondern gleich (2/n-1) ausklammern???

ersteres liefert:

U = 4/n² [ 1 + 2+ ... +n-1]

Nach Def gilt:

U = 4/n² * [mm] \bruch{n²-n}{2} [/mm]

und der Grenzwert davon wird nicht 2, was mache ich falsch?

Ich habe diese Frage in keinem anderen forum gestellt, ich sage schonmal danke und freue mich auf eine baldige Antwort! Vielen Dank!

MFG Ersty




        
Bezug
Ober- und Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 01.02.2011
Autor: fencheltee


> [mm]\integral_{1}^{3}{(x-1) dx}[/mm] berechne dieses Integral mit
> der Definition 1 + 2 + 3 + ... + n = [mm]\bruch{n(n+1)}{2}[/mm]
>  
> (Lösung ist 1)

lösung ist 2 meinst du

>  Hi, ich bin ziemlich raus aus dem Thema Ober und
> Untersumme, habe aber noch etwas Restwissen aus der
> Schule!
>  
> Ich habe es versucht auszurechnen, mache aber anscheinend
> Rechenfehler, könntet ihr mir vlt sagen, wo ich falsch
> liege, ich wäre euch sehr dankbar!
>  
> Auf gehts:
>  
> Zerlegung in 1, 1+1*2/n, 1+2*2/n, ... , 1+(n-1)*2/n, 1+n
> *2/n
>  
> [mm]\Delta[/mm] x = 2/n
>  
> Die Untersumme berechnet sich folgendermaßen:
>  U = [mm]\Delta[/mm] x * f(1) + [mm]\Delta[/mm] x * f(1+1*2/n) +...+ [mm]\Delta[/mm] x
> * f(1+(n-1)*2/n)
>  
> jetzt kann ich [mm]\Delta[/mm] x rausziehen:
>  
> U = [mm]\Delta[/mm] x * [ f(1) + ... + f(1+(n-1)*2/n)]
>  
> Werte einsetzen:
>  
> U = 2/n * [ 0 + (1+ 2/n -1) + ... + (1+(n-1)*2/n -1) ]  
> (#)
>  
> ist das richtig bis hierher?
>  
> jetzt ausrechnen, und da bin ich mir nicht sicher, ob das
> korrekt ist:
>  
> U = 2/n * [ 2/n + 2*2/n + ... + (n-1)*2/n ]
>  
> jetzt 2/n ausklammern oder bei (#) nicht ausrechnen,
> sondern gleich (2/n-1) ausklammern???
>  
> ersteres liefert:
>  
> U = 4/n² [ 1 + 2+ ... +n-1]
>  
> Nach Def gilt:
>  
> U = 4/n² * [mm]\bruch{n²-n}{2}[/mm]
>  
> und der Grenzwert davon wird nicht 2, was mache ich
> falsch?

sieht man doch auf anhieb, dass 2 herauskommt!
wie rechnest du denn ab hier weiter?

>  
> Ich habe diese Frage in keinem anderen forum gestellt, ich
> sage schonmal danke und freue mich auf eine baldige
> Antwort! Vielen Dank!
>
> MFG Ersty
>  
>
>  

gruß tee

Bezug
                
Bezug
Ober- und Untersumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Di 01.02.2011
Autor: Ersty

Blöd, ja! vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de