www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Ober/Untersumme
Ober/Untersumme < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ober/Untersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Mi 04.04.2007
Autor: ueberforderter_Ersti

Aufgabe
[mm] s_{n}=h\summe_{k=o}^{n-1}(kh)^{2} [/mm] (Untersumme)
Berechne die Fläche der Untersumme.
[mm] (h=\bruch{a}{n}) [/mm]

Hi zusammen,
ich habe bei folgender Aufgabe ein kleines Problem. Die Fragestellung an sich ist mir klar, ich weiss auch theoretisch was zu tun wäre =) Nur bei der Ausführung happerts ein wenig:
Also ich muss zuerst die explizite Form der Untersumme herausfinden um dann das Integral zu berechnen.
Also:
[mm] s_{n}=\bruch{a}{n}*\summe_{k=o}^{n-1}(k*a/n)^{2} [/mm]
[mm] s_{n}=\bruch{a}{n}*\summe_{k=o}^{n-1}(k^{2}*(a/n)^{2}) [/mm]
[mm] s_{n}=\bruch{a}{n}*(\bruch{a^{2}*(n-1)}{n^{2}}*\summe_{k=o}^{n-1}k^{2}) [/mm]
Ist dies soweit einigermassen korrekt? Nun habe ich das Problem mit der Summe.. Ich weiss nicht wie ich das konkret schreiben kann. Kann mir evt jemand von euch weiterhelfen? Wäre sehr dankbar!
Ersti


        
Bezug
Ober/Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Mi 04.04.2007
Autor: HJKweseleit

[mm]s_{n}=\bruch{a}{n}*\summe_{k=o}^{n-1}(k^{2}*(a/n)^{2})[/mm]

Bis hier korrekt, aber nun nicht  [mm]s_{n}=\bruch{a}{n}*(\bruch{a^{2}*(n-1)}{n^{2}}*\summe_{k=o}^{n-1}k^{2})[/mm]

sondern
[mm]s_{n}=\bruch{a}{n}*(\bruch{a^{2}}{n^{2}}*\summe_{k=o}^{n-1}k^{2})[/mm]
[mm]s_{n}=\bruch{a^{3}}{n^{3}}*\summe_{k=o}^{n-1}k^{2}[/mm]

Für die Summe gibt es nun eine Formel, die einzusetzen ist:
[mm]s_{n}=\bruch{a^{3}}{n^{3}}*\bruch{n(2n-1)(n-1)}{6}[/mm]
[mm]s_{n}=\bruch{a^{3}}{6}*1*(2-\bruch{1}{n})*(1-\bruch{1}{n})[/mm]
mit dem Grenzwert [mm]s_{n}=\bruch{a^{3}}{3}[/mm]

Bezug
                
Bezug
Ober/Untersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Mi 04.04.2007
Autor: ueberforderter_Ersti

Vielen herzlichen Dank für die ausführliche Erklärung!
Ist mir soweit jetzt alles klar *juhui* Habe nur noch eine Frage:
Wie kommst du auf die Formel um [mm] \summe{i=0}{n-1}k^{2} [/mm] umzuschreiben.
Vielen lieben Dank Ersti

Bezug
                        
Bezug
Ober/Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 04.04.2007
Autor: schachuzipus

Hallo ersti,

das ist die Formel für die Summe der ersten n Quadratzahlen:

[mm] \summe_{i=1}^{n}i^2=\summe_{i=0}^{n}i^2=\frac{n(n+1)(2n+1)}{6} [/mm]

Hier läuft die Summe aber eins weniger weit, also nur bis n-1, also

[mm] \summe_{i=0}^{n-1}i^2=\frac{(n-1)n(2(n-1)+1)}{6}=\frac{n(n-1)(2n-1)}{6} [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de