www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Oberflächenberechnung Zylinder
Oberflächenberechnung Zylinder < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenberechnung Zylinder: Frage
Status: (Frage) beantwortet Status 
Datum: 20:04 Mi 17.08.2005
Autor: ado

Hello, it's me again!

Ich bekomme irgendwie nicht das richtige Ergebnis für die folgende Aufgabe:

Volumen V = ?
Oberfläche O = ?

für Zylinder mit Höhe h = 8m
Durchmesser [mm] d = 4m \Rightarrow r=2m [/mm]
Wanddicke 1m

Der Zylinder soll ein Rohr sein! D.h. nach oben und unten hin offen.

Rangegangen bin ich folgendermaßen (ich mach das mal ganz detailiert):

erstmal ganz normal die Oberfläche berechnet:

[mm]O_{1}=(2\pi r (r+h)) = 2\pi 2 (2+8) = 125,664m^{2}[/mm]

davon den Deckel und den Boden abgezogen:

[mm]O_{2}=O_{1}-2\pi r^{2}=O_{1}-25.133=100,511[/mm]

nun den tatsächlichen deckel des Rohres errechnen,
dafür das Loch vom gesamten Deckel abziehen:

[mm]O_{3} = (\pi r^{2}) - (\pi (r-1)^{2}) = \pi4 - \pi = 9,425 [/mm]

das ganze zur bisherigen Oberfläche dazu (je einmal für Boden und Deckel):

[mm]O_{4}=O_{2}+2O_{3} = 100,551+18,85 = 119,401[/mm]

und nun noch einmal einen Zylinder für die Innenwand berechnen, von diesem wieder Deckel und Boden abziehen und alles zusammen rechnen:

[mm]O_{5}=(2\pi (r-1) ((r-1)+h)) - 2(\pi (r-1)^{2})=(2\pi (1) ((1)+8)) - 2(\pi (1)^{2})=6,283 (9 - 6,283)[/mm]
[mm]O_{5}=17,071[/mm]


[mm][mm] O=O_{4}+O_{5}=119,401+17,071=136,472m^{2} [/mm]

wer findet meinen Fehler?
denn die Lösung sagt: [mm] 169.646m^{2} [/mm]


Für das Volumen habe ich mich so Versucht:

[mm]V_{1} = \pi r^{2}h =100,531m^{3}[/mm]

[mm]V_{2} = \pi (r-1)^{2}h = 25,133m^{3}[/mm]

[mm]V=V_{1}-V_{2} = 75,398 [/mm]

mit dem Volumen liege ich absolut richtig (laut Lösung..



        
Bezug
Oberflächenberechnung Zylinder: (Leichte) Rechenfehler
Status: (Antwort) fertig Status 
Datum: 20:22 Mi 17.08.2005
Autor: Loddar

Hallo ado!


Du hast "nur" leichte Rechenfehler gemacht ...


> erstmal ganz normal die Oberfläche berechnet:
>  
> [mm]O_{1}=(2\pi r (r+h)) = 2\pi 2 (2+8) = 125,664m^{2}[/mm]

[ok]

  

> davon den Deckel und den Boden abgezogen:
>  
> [mm]O_{2}=O_{1}-2\pi r^{2}=O_{1}-25.133=100,511[/mm]

[notok]  [mm] $O_2 [/mm] \ = \ 125,664 - 25,133 \ = \ [mm] 100,5\red{3}1 [/mm] \ [mm] m^2$ [/mm]



Das hättest Du aber kürzer haben können über die Mantelformel:

$M \ = \ [mm] 2*\pi*r*h [/mm] \ = \ [mm] 2*\pi*2*8 [/mm] \ = \ [mm] 32\pi [/mm] \ [mm] \approx [/mm] \ 100,531 \ [mm] m^2$ [/mm]


> nun den tatsächlichen deckel des Rohres errechnen,
>  dafür das Loch vom gesamten Deckel abziehen:
>  
> [mm]O_{3} = (\pi r^{2}) - (\pi (r-1)^{2}) = \pi4 - \pi = 9,425[/mm]

[ok]


> das ganze zur bisherigen Oberfläche dazu (je einmal für
> Boden und Deckel):
>  
> [mm]O_{4}=O_{2}+2O_{3} = 100,551+18,85 = 119,401[/mm]

[notok] Hier hast Du falsch abgeschrieben von oben:

[mm] $O_4 [/mm] \ = [mm] \O_2 [/mm] + [mm] 2O_3 [/mm] \ = \ [mm] 100,5\red{3}1 [/mm] + 18,850 \ = \ [mm] 119,\red{381} [/mm] \ [mm] m^2$ [/mm]

  

> und nun noch einmal einen Zylinder für die Innenwand
> berechnen, von diesem wieder Deckel und Boden abziehen und
> alles zusammen rechnen:
>  
> [mm]O_{5}=(2\pi (r-1) ((r-1)+h)) - 2(\pi (r-1)^{2})=(2\pi (1) ((1)+8)) - 2(\pi (1)^{2})=6,283 (9 - 6,283)[/mm]

[notok] Falsch ausgeklammert:

[mm] $O_5 [/mm] \ = \ [mm] 2\pi*(9-\red{1}) [/mm] \ = \ [mm] 16\pi [/mm] \ = \ 50,265 \ [mm] m^2$ [/mm]


> [mm]O=O_{4}+O_{5}=119,401+17,071=136,472m^{2}[/mm]

[notok] Folgefehler:

$O \ = \ 119,381 + 50,265 \ = \ 169,646 \ [mm] m^2$ [/mm] [ok]



> Für das Volumen habe ich mich so Versucht:

> [mm]V_{1} = \pi r^{2}h =100,531m^{3}[/mm]

> [mm]V_{2} = \pi (r-1)^{2}h = 25,133m^{3}[/mm]

> [mm]V=V_{1}-V_{2} = 75,398 [/mm]


[ok] Ist auch richtig gerechnet ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de