www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Oberflächenbestimmung
Oberflächenbestimmung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenbestimmung: Tipp mit Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:31 Di 22.08.2006
Autor: conzalis

Aufgabe
Wie sind die Ausmaße einer zylindrischen Dose mit Deckel zu wählen, damit sie den Inhalt 1 dm³ hat und zu ihrer Herstellung möglichst wenig Material verwendet wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich weiß wie ich das Volumen berechene (V=2*pi*r²*h) und die Oberfläche (O=2*pi*r²+2*pi*r*h). Ich komme allerdings nicht darauf, wie ich diese Formeln verändern muss, um die richtige Antwort zu erhalten!!!
Ich weiß nur das ichs zu r oda h umstellen muss aber dann komm ich nicht weiter!
bitte um hilfe

        
Bezug
Oberflächenbestimmung: Haupt- und Nebenbedingung
Status: (Antwort) fertig Status 
Datum: 17:40 Di 22.08.2006
Autor: Loddar

Hallo conzalis,

[willkommenmr] !!


Wir haben ja gemäß Aufgabenstellung gegeben (die sogenannte "Nebenbedingung"):

$V \ = \ [mm] \pi*r^2*h [/mm] \ = \ [mm] \red{1 \ dm^3}$ [/mm]

Dies kannst nun umstellen nach [mm] $\blue{h} [/mm] \ = \ ...$ , und anschließend einsetzen in die "Hauptbedingung" $O \ = \ [mm] 2*\pi*r^2+2*\pi*r*\blue{h}$ [/mm] .

Damit hast Du dann eine Zielfunktion $O \ = \ O(r)$ , die nur noch von einer Variablen (nämlich dem Radius $r_$ ) abhängig ist.

Für diese Funktion dann die Extremwertberechenung (Nullstellen der 1. Ableitung $O'(r)$ etc.) durchführen.


Gruß
Loddar


Bezug
                
Bezug
Oberflächenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Di 22.08.2006
Autor: conzalis

ich verstehe es i-wie nicjt, bitte um mehr hilfe hab nen black out^^

Bezug
                        
Bezug
Oberflächenbestimmung: genaues Problem
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Di 22.08.2006
Autor: Loddar

Hallo conzalis!


Wo genau hängt's denn genau?


Gruß
Loddar


Bezug
                                
Bezug
Oberflächenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Di 22.08.2006
Autor: conzalis

die formel lautet dann ja:
[mm] O=2*\pi*r²+2*(\bruch{1dm³}{\pi*r}) [/mm]
und die ableitung dann:
[mm] O'(r)=4*\pi*r+\bruch{2*\pi*r-1*2dm³}{\pi*r²} [/mm]
und das dann gleich Null setzen, also
[mm] 0=4*\pi*r+\bruch{2*\pi*r-1*2dm³}{\pi*r²} [/mm]
das heißt:
[mm] 2dm³=2*\pi*r [/mm]
dann dividiert durch 2 und [mm] \pi [/mm] :
r=0.318dm³

stimmt das so, irgendwie is das komisch, oder

Bezug
                                        
Bezug
Oberflächenbestimmung: Korrektur zur Zielfunktion
Status: (Antwort) fertig Status 
Datum: 19:13 Di 22.08.2006
Autor: Loddar

Hallo!


> die formel lautet dann ja: [mm]O=2*\pi*r²+2*(\bruch{1dm³}{\pi*r})[/mm]

[notok] Hier hast Du ein [mm] $\pi*r$ [/mm] unterschlagen und "vergessen" zu kürzen. Außerdem brauchst Du hier die Einheit [mm] $dm^3$ [/mm] nicht die ganze mitzuschleppen:

$O(r) \ = \ [mm] 2*\pi*r^2+2*\red{\pi*r}*\bruch{\red{1}}{\pi*r^2} [/mm] \ = \ [mm] 2*\pi*r^2+2*r^{-1}$ [/mm]

Nun hier die Ableitung $O'(r)_$ ermitteln ...


Gruß
Loddar


Bezug
                                                
Bezug
Oberflächenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Di 22.08.2006
Autor: conzalis

oja, hab ich übersehen
danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de