www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Oberflächeninteg. über Vektorf
Oberflächeninteg. über Vektorf < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächeninteg. über Vektorf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:27 Fr 15.09.2006
Autor: stevarino

Aufgabe
Vom Vektorfeld

[mm] v=\vektor{z \\ x\\-3y^{2}z} [/mm] ist das Oberflächenintegral [mm] \integral_{}^{}{}\integral_{}^{}{v dO} [/mm] den von z=0 bis z=5 reichenden Zylinder [mm] x^{2}+y^{2}=16 [/mm] zu berechnen

Hallo

also ich fang mal an ich muss die Grundfläche parametrisieren mit
[mm] x=\vektor{r*cos \phi \\ r*sin \phi\\0} [/mm] jetzt berechne ich [mm] x_{r}\times x_{\phi}=\vektor{0 \\ 0\\r} [/mm]
[mm] =\integral_{0}^{4}{}\integral_{0}^{2\pi}{\vektor{0 \\ r*cos \phi\\0}* \vektor{0 \\ 0\\r}dr d\phi}=... [/mm]
und für die Deckfläche wäre es
[mm] \integral_{0}^{4}{}\integral_{0}^{2\pi}{\vektor{5 \\ r*cos \phi\\-15r^{2}cos^{2}\phi}* \vektor{0 \\ 0\\r}dr d\phi}=... [/mm]
und für den Mantel mit
[mm] x=\vektor{4*cos \phi \\ 4*sin \phi\\z} [/mm] wäre es
[mm] \integral_{0}^{4}{}\integral_{0}^{2\pi}{\vektor{z \\ 4*cos \phi\\-48cos^{2}\phi*z}* \vektor{4cos \phi \\ 4sin\pji\\0}dr d\phi}... [/mm]

Stimmen die Ansätze so... Oder muss ich die noch jeweils mit dem Normalvektor multiplizieren der immer aus dem Körper zeigen muss
also bei Grundfläche wäre der Normalvektor [mm] n=\vektor{0 \\ 0\\1} [/mm] und wenn der jetzt rauszeigen soll muss es [mm] n=\vektor{0 \\ 0\\-1} [/mm]
Wann brauch ich den Normalvektor dabei ????

Danke

lg Stevo

        
Bezug
Oberflächeninteg. über Vektorf: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Fr 15.09.2006
Autor: ron

Hallo,

In Zylinderkoordinaten gilt [mm] \vektor{r cos{ \phi } \\ r sin { \phi } \\ z} [/mm]
Hier z von 0 bis 5
Bei der Koordinatentransformation beachte z ist neben r und [mm] \phi [/mm] Integralvariable!
Dann die Werte in das Vektorfeld einsetzen und die Vektorprodukte ausrechnen und integrieren. Sinnvolle Reihenfolge wählen.
Vielleicht könne diese Hiweise helfen beim Verständnis und lösen.
Gruß
Ron

Bezug
        
Bezug
Oberflächeninteg. über Vektorf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Fr 15.09.2006
Autor: stevarino

Hallo

Also wenn [mm] x^{2}+y^{2}=r^{2} [/mm] ist dann ist [mm] r^{2}=16 [/mm] und das ist nun mal 4 und nicht 2


lg Stevo

Bezug
        
Bezug
Oberflächeninteg. über Vektorf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 18.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de