www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberflächenintegral
Oberflächenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Do 17.06.2010
Autor: valoo

Aufgabe
[mm] \vec{E}=\vektor{4*x \\ -2*y^{2} \\ z^{2}} [/mm]
Sei V der Zylinder, der von den Ebenen z=0 und z=3 sowie [mm] x^{2}+y^{2}=4 [/mm] bestimmt wird. Sei M die Mantelfläche und bestehe G aus den Grundflächen
Bestimme
[mm] \integral_{M}{d\vec{A}*\vec{E}} [/mm]
[mm] \integral_{G}{d\vec{A}*\vec{E}} [/mm]
[mm] \integral_{V}{dV\nabla*\vec{E}} [/mm] und verifiziere den Gauß'schen Satz.

Heyho!

Das dritte hab ich sogar hingekriegt das auszurechnen. Aber ich habe keine Ahnung wie man solche Integrale wie das erste und zweite berechnet.
In der VL hatten wir lediglich ein Beispiel, dass über eine Fläche in einer Ebene z=const integriert haben. Da war das noch vergleichsweise einfach...
Aber wie das im Allgemeinen geht, hab ich keine Ahunung von -_-
Da das nen Zylinder ist, gehts doch bestimmt mit Zylinderkoordinaten, wat?
Wie sieht denn das vekorielle Flächenelement dazu aus???

        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Do 17.06.2010
Autor: gfm


> [mm]\vec{E}=\vektor{4*x \\ -2*y^{2} \\ z^{2}}[/mm]
>  Sei V der
> Zylinder, der von den Ebenen z=0 und z=3 sowie
> [mm]x^{2}+y^{2}=4[/mm] bestimmt wird. Sei M die Mantelfläche und
> bestehe G aus den Grundflächen
>  Bestimme
>  [mm]\integral_{M}{d\vec{A}*\vec{E}}[/mm]
>  [mm]\integral_{G}{d\vec{A}*\vec{E}}[/mm]
>  [mm]\integral_{V}{dV\nabla*\vec{E}}[/mm] und verifiziere den
> Gauß'schen Satz.
>  Heyho!
>  
> Das dritte hab ich sogar hingekriegt das auszurechnen. Aber
> ich habe keine Ahnung wie man solche Integrale wie das
> erste und zweite berechnet.
>  In der VL hatten wir lediglich ein Beispiel, dass über
> eine Fläche in einer Ebene z=const integriert haben. Da
> war das noch vergleichsweise einfach...
>  Aber wie das im Allgemeinen geht, hab ich keine Ahunung
> von -_-
>  Da das nen Zylinder ist, gehts doch bestimmt mit
> Zylinderkoordinaten, wat?
>  Wie sieht denn das vekorielle Flächenelement dazu aus???

Hast Du schon mal []hier  geschaut?

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de