www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Oberflächenintegral
Oberflächenintegral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 15.01.2012
Autor: DoubleHelix

Aufgabe
Man berechne die folgende Oberflächenintegrale:

[mm] \integral_{}\integral_{B}^{}{\vektor{x^2+3y \\ 2x+5 \\ xyz} dB} [/mm]
B:= 2z+3x+4y=12


Hallo,
ich habe bei solchen Aufgaben immer das problem der richtigen Grenzwahl.
zuerst habe ich nach z aufgelöst und erhalte [mm] z=6-\bruch{3}{2}x-2y [/mm]
[mm] F=\vektor{x^2+3y \\ 2x+5 \\ xy(6-\bruch{3}{2}x-2y)} [/mm]
der Normalvektor ergibt sich laut Skript zu:
[mm] \vec{n}=\vektor{\bruch{3}{2} \\ 2 \\ 1} [/mm]
Das Integral [mm] lautet:\integral_{x_1}^{x_2}{}\integral_{y_1}^{y_2}{\vektor{x^2+3y \\ 2x+5 \\ xy(6-\bruch{3}{2}x-2y)}\vektor{\bruch{3}{2} \\ 2 \\ 1} dxdy} [/mm]

Leider komme ich, wie oben erwähnt, nicht auf die Grenzen für x und y. Steh gerade auf der Leitung ;) Bitte um Hilfe.

mfg
Double


        
Bezug
Oberflächenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 So 15.01.2012
Autor: Event_Horizon

Hallo!

So, wie du diese Aufgabe angegeben hast, gibt es auch keinerlei Grenzen. Das ist etwa so wie

Man berechne das Integral [mm] $\int 2x+5\,dx$ [/mm] .

Du kannst zwar die Stammfunktion bilden, aber keine konkreten Werte ausrechnen.
Da du über eine Fläche integrierst, integrierst du auch über zwei Variablen, und dann ist das völlig richtig so.

Davon ausgehend, daß die Grenzen von x und y nicht voneinander abhängen (d.h. beide sind konstant), kannst du nun die Stammfunktion bilden, mehr aber auch nicht.

Zu guter Letzt könnte ein Kommilitone die Ebenengleichung nach y aufgelöst haben, er würde dann über x und z integrieren, und damit eine andere Stammfunktion erhalten, die mit deiner nicht vergleichbar ist...



Statt konkreter Grenzen könnte übrigens auch sowas wie "Integral über den Bereich der Fläche B, die von einem Zylinder mit Radus r eingeschlossen wird" vorkommen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de