www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Oberflächenintegrale
Oberflächenintegrale < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegrale: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 13:44 Mo 19.09.2011
Autor: EtechProblem

Aufgabe
Berechnen Sie die Oberfläche eines Parabolspiegels, der durch die Funktion

[mm] z=f(x,y)=\bruch{1}{2}(x^2+y^2) [/mm]

gegeben ist, wobei -R [mm] \le [/mm] x [mm] \le [/mm] R und [mm] -\wurzel{R^2-x^2} \le [/mm] y [mm] \le \wurzel{R^2-x^2} [/mm] gelten.

Hallo leute,

bei dieser aufgabe muss mal ja erstmal den r-Vektor aufstellen und den nach phi und r ableiten und aus den beiden ein Kreuzprodukt bilden.
Nun ist meine frage wie das R aussieht? Das hatte ich mir überlegt: [mm] \vec{r} [/mm] =
[mm] \pmat{ r*cos phi \\ r* sin phi \\ \bruch{1}{2}r^2} [/mm] ist das so richtig?

Danke schon mal für die Hilfe

        
Bezug
Oberflächenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 19.09.2011
Autor: Al-Chwarizmi


> Berechnen Sie die Oberfläche eines Parabolspiegels, der
> durch die Funktion
>  
> [mm]z=f(x,y)=\bruch{1}{2}(x^2+y^2)[/mm]
>  
> gegeben ist, wobei -R [mm]\le[/mm] x [mm]\le[/mm] R und

>  [mm]-\wurzel{R^2-x^2} \le\ y\ \le \wurzel{R^2-x^2}[/mm] gelten.

>  Hallo leute,
>  
> bei dieser aufgabe muss mal ja erstmal den r-Vektor
> aufstellen und den nach phi und r ableiten und aus den
> beiden ein Kreuzprodukt bilden.
>  Nun ist meine frage wie das R aussieht? Das hatte ich mir
> überlegt:
>  [mm]\vec{r}\ =\ \pmat{ r*cos\,\varphi \\ r* sin\,\varphi \\ \bruch{1}{2}r^2}\qquad\red{\checkmark}[/mm]
> ist das so richtig?

Ja.
  

> Danke schon mal für die Hilfe


Hallo,

es fragt sich, ob die Darstellung in Zylinderkoordinaten
überhaupt nötig und sinnvoll ist. Ich würde eher versuchen,
das Ganze mittels eines einfachen Integrals über die Variable
z zu lösen. Um die Paraboloidkappe zu beschreiben, kann
man ja einfach ein Bogenstück der in der z-x-Ebene liegenden
Halbparabel mit der Gleichung [mm] x=\sqrt{2\,z} [/mm] um die z-Achse rotieren
lassen.
Möglicherweise wird die Rechnung via Zylinderkoordinaten
aber am Ende trotzdem einfacher.

LG   Al-Chw.


Bezug
                
Bezug
Oberflächenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 19.09.2011
Autor: EtechProblem

Aber muss man nicht das Oberflächen integral nach der funktion setzen und diese funktion integrieren? In der Musterlösung hat er [mm] vec_{r} [/mm] nach phi und r abgelitten und das produkt nach dr und dphi integriert.

| [mm] \vec_{r}_{phi} [/mm] x [mm] \vec_{r}_{r} [/mm] | = | [mm] \vektor{-r*sin phi \\ r*cos phi \\ 0} [/mm] x [mm] \vektor{cos phi \\ sin phi \\ r} [/mm] | =| [mm] \vektor{r^2 cos phi \\ r^2 sin phi \\ -r} [/mm] | = [mm] r*\wurzel{r^2+1} [/mm]

und dann hat er [mm] \integral_{}^{} \integral_{}^{} [/mm] dO= [mm] \integral_{0}^{2\pi} \integral_{0}^{R} r*\wurzel{r^2+1} [/mm]  und danach mit substitution das integral gelöst.


Bezug
                        
Bezug
Oberflächenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mo 19.09.2011
Autor: Al-Chwarizmi


> Aber muss man nicht das Oberflächen integral nach der
> funktion setzen und diese funktion integrieren? In der
> Musterlösung hat er [mm]\vec{r}[/mm] nach phi und r abgelitten    [haee]

    abgelitten ?    oh, der Arme !

    du meinst wohl   "abgeleitet"


> und das produkt nach dr und [mm] d\varphi [/mm] integriert.
>  
> [mm]\left|\vec{r}_{\varphi}\ \times\ \vec{r}_{r}\right|\ =\ \left| \vektor{-r*sin\, \varphi \\ r*cos\, \varphi \\ 0} \ \times\ \vektor{cos\,\varphi \\ sin\,\varphi \\ r}\right|\ =\ \left|\vektor{r^2 cos\,\varphi \\ r^2 sin\,\varphi \\ -r} \right|\ =\ r*\wurzel{r^2+1}[/mm]
>  
> und dann hat er [mm]\integral_{}^{} \integral_{}^{}[/mm] dO=
> [mm]\integral_{0}^{2\pi} \integral_{0}^{R} r*\wurzel{r^2+1}[/mm]  
> und danach mit substitution das integral gelöst.


Das sollte richtig kommen.

LG   Al-Chw.  


Bezug
                                
Bezug
Oberflächenintegrale: Aufgabe 1
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:52 Mo 19.09.2011
Autor: EtechProblem

Aufgabe
Berechnen Sie das Oberflächenintegral
[mm] \integral_{}^{} \integral_{S}^{} \wurzel{\bruch{x^2}{a^4}+\bruch{y^2}{b^4}+ \bruch{z^2}{c^4}} [/mm] dS

welches über die Oberfl¨ache S des Ellipsoids [mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}+ \bruch{z^2}{c^2}=1 [/mm]

Hinweis: Benutzen Sie die Koordinaten x=a*sin phi cos teta, y=b*sin phi cos teta, z=c*cos phi (0 [mm] \le [/mm] phi, teta [mm] \le 2\pi [/mm]




Diese aufgabe ist so ähnlich wie Aufgabe 2. Hier muss man auch [mm] \vec_{r} [/mm] berechnen, das nach phi und teta ableiten und den Betrag aus dem Kreuzprodukt berechnen.

Aber dann setzt er [mm] \vec_{r}_{phi} [/mm] x [mm] \vec_{r}_{teta} [/mm] dphi+dteta einfach für dS ein und integriert. Was ich nicht verstehe ist wieso das so ist.

Ich meine in beiden aufgaben wird nach der Oberfläche gefragt, in beiden aufgaben rechnet man [mm] \vec_{r} [/mm] nur in Aufgabe 1 setzt man das  [mm] \vec_{r} [/mm] noch in das Oberflächenintegral ein.

Was ist der unterschied? Und worauf muss ich bei solchen aufgaben achten? Ich hätte jzt z.b das selbe gemacht wie bei  2

Bezug
                                        
Bezug
Oberflächenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mo 19.09.2011
Autor: Al-Chwarizmi

1.)  in dieser neuen Aufgabe wird nicht nach der Oberfläche gefragt !

2.)  neue Aufgabe  ---->  neuer Thread !


LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de