www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Obergrenze von Summen
Obergrenze von Summen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Obergrenze von Summen: Frage
Status: (Frage) beantwortet Status 
Datum: 18:53 Mi 19.01.2005
Autor: BAGZZlash

Hallo!

Mir hat sich heute folgendes Problemchen aufgetan:  Für welches T ist die Gleichung  [mm] \summe_{t=1}^{T} 0,6^{t}=1 [/mm] erfüllt? Die Lösung: Für keins. Durch Ausprobieren findet man, daß für T = 2 die linke Seite 0,96, also zu klein, für T = 3 mit 1,176 zu groß ist. T müsste also  [mm] \in [/mm] (2,3) sein. Da T jedoch selbstverständlich eine ganze Zahl sein muß, existiert keine Lösung. Trotzdem: Gibt es eine Möglichkeit, die Grenzen, zwischen denen T liegen muß (oder zumindest eine davon), analytisch zu bestimmen, d.h. ohne simples Ausprobieren? Vielen Dank im Voraus!

    BAGZZlash

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Obergrenze von Summen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 19.01.2005
Autor: andreas

hallo


ich weiß zwar nicht so genau, ob du das wissen wolltest, aber die summe kann man exakt berechnen (es ist nämlich eine geometrische summe):

[m] \sum_{t=1}^T \left( \frac{3}{5} \right)^t = \frac{ \left( \frac{3}{5} \right)^{T+1} - \frac{3}{5}}{\frac{3}{5}-1} = \frac{3}{2} \left( 1 - \left( \frac{3}{5} \right)^{T} \right) [/m]

wenn man dies nun gleich eins setzt kann man die gleichung ja nach $T$ auflösen.

grüße
andreas

Bezug
                
Bezug
Obergrenze von Summen: Weitere Frage
Status: (Frage) beantwortet Status 
Datum: 09:30 Do 20.01.2005
Autor: BAGZZlash

Hallo!

Vielen Dank für die Antwort. Leider war das tatsächlich nicht das, was ich wissen wollte.
Ich muß eine Summe vom Typ  [mm] \summe_{t=1}^{T} x^{t} [/mm] gleich einen Wert y setzen und herausfinden, wie oft die Summe "durchlaufen" werden muß, um die Gleichheit herzustellen. Hierbei will ich auf Ausprobieren verzichten! :-)

Bezug
                        
Bezug
Obergrenze von Summen: noch ein versuch
Status: (Antwort) fertig Status 
Datum: 16:02 Do 20.01.2005
Autor: andreas

hallo


versteh ich das richtig, dass du ganz allgemien die gleichung

[m] \sum_{t=1}^T x^t = y [/m]

lösen willst? dann habe ich vorher nämlich schon das entscheidende stichwort geliefert: geometrische summenformel. man kann ganz allgemien zeigen (das ist eine einfache vollständige induktion), dass [m] \sum_{t=1}^T x^t = \frac{x^{T+1} - x}{x-1} \qquad \textrm{für } x \not= 1 [/m]. somit vereinfacht sich die von dir zu lösende gleichung zu [m] \frac{x^{T+1} - x}{x-1} = y \; \Longleftrightarrow \; x^{T+1} = y(x-1) + x \; \Longleftrightarrow \; T = \frac{\ln(y(x-1) + x)}{\ln x} - 1 [/m], wobei das natürlich nur dann ein sinnvolles ergebnis für dein problem liefert, wenn $T$ eine natürliche zahl ist!


wenn das wieder nicht deine frage war, musst du die etwas konkreter stellen - ich weiß nämlich wirklich nicht, was du sonst willst!



grüße
andreas

Bezug
                                
Bezug
Obergrenze von Summen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 20.01.2005
Autor: BAGZZlash

Hi!

Super, vielen Dank. Das war genau das, was ich wissen wollte. Sorry bitte für die unpräzise Formulierung... :-)
Hmm, naja, wenn man's weiß, ist's ja einfach. Hätte man ja fast selber drauf kommen können. Okay, wäre ich aber nie, ich hab's nicht so mit Reihen und Summen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de