www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Obersumme/untersumme
Obersumme/untersumme < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Obersumme/untersumme: Verständnis
Status: (Frage) beantwortet Status 
Datum: 00:15 Mi 14.03.2012
Autor: quasimo

Aufgabe
Hallo,
also ich hab das Integral von [mm] \integral_{0}^{1}{3+x dx}=7/2 [/mm] und das Integral von [mm] \integral_{0}^{1}{x-1/2 dx}=0 [/mm] ausgerechtnet mittels Ober und Untersummen.

Kann ich aus dem auch das Integral von [mm] \integral_{0}^{1} [/mm] {(3+x)*(x-1/2)  dx}schließen ohne wieder Untersummen und Obersummen auszurechnen??

Frage steht oben ;)

        
Bezug
Obersumme/untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Mi 14.03.2012
Autor: DM08

Du erhältst damit eine neue Funktion, so dass das im Allgemeinen so nicht geht.

Gruß

Bezug
        
Bezug
Obersumme/untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Mi 14.03.2012
Autor: leduart

hallo quasimo
da seh ich keine Möglichkeit.
Musst du das alles mit US und OS machen?
flächen von dreiecken und trapezen mit integralen auszurechnen ist sehr grenzwertig. wer verlangt das von dir?
gruss leduart

Bezug
                
Bezug
Obersumme/untersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 Mi 14.03.2012
Autor: quasimo

Aufgabe
Sei f(x) = 3+x, g(x) = x-1/2.
Gibt es ein [mm] \varepsilon \in [/mm] [0,1] mit
Gibt es ein [mm] \integral_{0}^{1}{f(x)*g(x) dx} [/mm] = [mm] f(\varepsilon) \integral_{0}^{1} [/mm] g(x) dx?
Widerspricht das Resultat dem Mittelwertsatz der Integralrechnung?

Ich poste mal die ganze AUfgabe bevor ist mich ganz verrenne^^




Also der Mittelsatz der Integralrechnung lautet
f stetig in [a,b], $ [mm] \phi \ge [/mm] $ 0 und Riemanintegrierbar
$ [mm] \exists \epsilon \in [/mm] $ [a,b] : $ [mm] \integral_{a}^{b}{f(x) \phi(x) dx} [/mm] $ = $ [mm] f(\epsilon)\integral_{a}^{b} \phi [/mm] $ (x) dx

f(x) = 3+x
Als Polynom stetig
Aber [mm] \phi [/mm] (unser g) [mm] \ge [/mm] $ 0 stimmt nicht im Intervall

Bezug
                        
Bezug
Obersumme/untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Mi 14.03.2012
Autor: angela.h.b.


> Sei f(x) = 3+x, g(x) = x-1/2.
>  Gibt es ein [mm]\varepsilon \in[/mm] [0,1] mit
>  Gibt es ein [mm]\integral_{0}^{1}{f(x)*g(x) dx}[/mm] =
> [mm]f(\varepsilon) \integral_{0}^{1}[/mm] g(x) dx?
>  Widerspricht das Resultat dem Mittelwertsatz der
> Integralrechnung?
>  Ich poste mal die ganze AUfgabe bevor ist mich ganz
> verrenne^^
>  
>
>
>
> Also der Mittelsatz der Integralrechnung lautet
>  f stetig in [a,b], [mm]\phi \ge[/mm] 0 und Riemanintegrierbar
>  [mm]\exists \epsilon \in[/mm] [a,b] : [mm]\integral_{a}^{b}{f(x) \phi(x) dx}[/mm]
> = [mm]f(\epsilon)\integral_{a}^{b} \phi[/mm] (x) dx
>
> f(x) = 3+x
>  Als Polynom stetig
>  Aber [mm]\phi[/mm] (unser g) [mm]\ge[/mm] $ 0 stimmt nicht im Intervall  

Hallo,

ja, und deshalb kann man den Satz auf Deine Situation nicht anwenden.

Jetzt rechne [mm] $\integral_{0}^{1}{f(x)*g(x) dx}$ [/mm] aus und [mm] $\integral_{0}^{1}{g(x) dx}$, [/mm] stelle fest, daß es kein solches [mm] \varepsilon [/mm] gibt, und sag', warum das kein Widerspruch zum Mittelwertsatz ist.

Integieren mithilfe der Bestimmung einer Stammfunktion könnt Ihr doch schon, oder? Ich würd' nämlich hier nicht dieses Summengedöns machen.

LG Angela


Bezug
                                
Bezug
Obersumme/untersumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Mi 14.03.2012
Autor: quasimo

Ofiziell sollen wir alles mit "Summengedöns" machen, aber das wird mir zu viel^^

Danke,lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de