www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Oktaeder..
Oktaeder.. < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oktaeder..: des Grauens..
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 01.03.2011
Autor: noreen

Aufgabe
Gegeben sind die Punkte A (13/-5/3), B(11/3/1), C (5/3 /7) und S1(13/1/9)

Begründen sie: Die Punkte A, B,C sind die Eckpunkte eines rechtwinkeligen und gleichschenkligen Dreiecks

Könnt ihr mir helfen ?
ich weiß das für die gleichschenkeligkeit zwei seite gleich lang sein müssen..und das da zwischen der rechte winkel liegt

        
Bezug
Oktaeder..: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Di 01.03.2011
Autor: Adamantin


> Gegeben sind die Punkte A (13/-5/3), B(11/3/1), C (5/3 /7)
> und S1(13/1/9)
>  
> Begründen sie: Die Punkte A, B,C sind die Eckpunkte eines
> rechtwinkeligen und gleichschenkligen Dreiecks
>  Könnt ihr mir helfen ?
>  ich weiß das für die gleichschenkeligkeit zwei seite
> gleich lang sein müssen..und das da zwischen der rechte
> winkel liegt

In welchem Themengebiet befinden wir uns denn? Wirklich in Exp-Funktionen ?! Und was hat das mit einem Oktaeder zu tun? Oo Ist heute der 1. April oder März??

Also für mich sieht das, abgesehen von den Punkten oben, nach einer wunderbaren Vektoraufgabe aus, daher sollten wir erstmal klären, mit welchen Instrumenten du diese Aufgabe lösen willst...


Bezug
                
Bezug
Oktaeder..: oktaeder
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Di 01.03.2011
Autor: noreen

Aufgabe
Okey.. dann ist die Einordnung wohl falsch..

ich weiß nicht welche INstrumente ich anwenden soll..denn wenn ich mir die Aufgabe anschau fällt mir nichts ein..

Sonst wäre ich wahrscheinlioch nicht hier..


Bezug
        
Bezug
Oktaeder..: erst Seiten ermitteln
Status: (Antwort) fertig Status 
Datum: 16:49 Di 01.03.2011
Autor: Loddar

Hallo noreen!


Bestimme zunächst die Vektoren der drei Dreiecksseiten wie z.B. [mm]\vec{a} \ = \ \overrightarrow{BC} \ = \ \overrightarrow{OC}-\overrightarrow{OB}[/mm] usw.

Dann von diesen drei Seiten die zugehörigen Längen über die Betragsformel von Vektoren ermitteln.


Gruß
Loddar


Bezug
                
Bezug
Oktaeder..: Oktaeder
Status: (Frage) beantwortet Status 
Datum: 17:01 Di 01.03.2011
Autor: noreen

Aufgabe
Also Bestimmnung: AB, BC, CA

??

Ist das richtig
Wenn ich jetzt z.b Vektor A - Vetor b rechne.. dann bekomm ich doch die Länge der seite heraus ?

Bezug
                        
Bezug
Oktaeder..: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Di 01.03.2011
Autor: fred97


> Also Bestimmnung: AB, BC, CA
>  
> ??
>  Ist das richtig
> Wenn ich jetzt z.b Vektor A - Vetor b rechne.. dann bekomm
> ich doch die Länge der seite heraus ?

Nein.

Dann bekommst Du zunächst [mm] \overrightarrow{AB}. [/mm] Berechne dann die Länge dieses Vektors

FRED


Bezug
                                
Bezug
Oktaeder..: Oktaeder
Status: (Frage) beantwortet Status 
Datum: 17:21 Di 01.03.2011
Autor: noreen

Aufgabe
Ja meinte ja AB ...

Also erst ab, sb und ca ausrechnen ?!

?

Bezug
                                        
Bezug
Oktaeder..: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Di 01.03.2011
Autor: Adamantin


> Ja meinte ja AB ...
>  
> Also erst ab, sb und ca ausrechnen ?!
>  ?

??

S hat hier noch nichts zu suchen, wenn du zeigen sollst, dass ABC ein rechtwinkliges und gleichschenkliges Dreieck ist.

Stell die Vektoren aller drei Seiten auf und berechne ihre Längen. Danach schaust du, ob zwei Seiten die gleiche Länge haben und du hast dein gleichschenkliges Dreieck. Die zwei Seiten, die den rechten Winkel einschließen, stehen orthogonal aufeinander und müssen als Skalarprodukt [mm] (\vec{a} \* \vec{b}=0 [/mm] ergeben. Damit prüfst du auch das.

Bezug
                                                
Bezug
Oktaeder..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Di 01.03.2011
Autor: noreen

Aufgabe
Sorry das war ein Tippfehler..

also wenn ich ich die vektoren aufstelle .. habe ich AB ,BC und CA

So diese rechne ich dann jeweils aus also A*B = Betrag
                                                                   B*C=Betrag etc ?

?

Bezug
                                                        
Bezug
Oktaeder..: Oktaeder
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:46 Di 01.03.2011
Autor: noreen

Aufgabe
Wie bestimme ich denn die Vektoren ?

ich kann doch einfach A*B rechnen... etc ?

Bezug
                                                        
Bezug
Oktaeder..: nicht richtig
Status: (Antwort) fertig Status 
Datum: 17:46 Di 01.03.2011
Autor: Loddar

Hallo noreen!


Wie multipliziert man denn Punkte?

Kennst Du die Formel für den betrag eines Vektors?

[mm]\left\|\vec{v}\right\| \ = \ \left\|\vektor{x\\ y\\ z}\right\| \ = \ \wurzel{x^2+y^2+z^2}[/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de