www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Operator
Operator < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Operator: Erklärung
Status: (Frage) beantwortet Status 
Datum: 11:36 Fr 10.12.2010
Autor: ella87

Aufgabe
.....
Sei [mm] n \in \IN [/mm]. Sei [mm] [a_k ,a_{k-1} ,...., a_0]_{10}[/mm] die Schreibweise von [mm] n^[/mm] im 10-er System.
Sei [mm]a^{ } = [a_k ,a_{k-1} ,...., a_2]_{10} [/mm] und [mm]b^{ } =[a_1 , a_0]_{10}[/mm]. Beweisen Sie:

[mm] 7|n \gdw 7|2a+b [/mm]

Ich kenn den Operator "|" nicht.
Er wird auch leider nicht in der Aufgabe erkärt.

Wäre dankbar für eine Erklärung oder einen brauchbaren Link!

Danke

        
Bezug
Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Fr 10.12.2010
Autor: MathePower

Hallo ella87,

> .....
>  Sei [mm]n \in \IN [/mm]. Sei [mm][a_k ,a_{k-1} ,...., a_0]_{10}[/mm] die
> Schreibweise von [mm]n^[/mm] im 10-er System.
> Sei [mm]a^{ } = [a_k ,a_{k-1} ,...., a_2]_{10}[/mm] und [mm]b^{ } =[a_1 , a_0]_{10}[/mm].
> Beweisen Sie:
>  
> [mm]7|n \gdw 7|2a+b[/mm]
>  Ich kenn den Operator "|" nicht.
>  Er wird auch leider nicht in der Aufgabe erkärt.


"7|n" steht für "7 teilt n".


>  
> Wäre dankbar für eine Erklärung oder einen brauchbaren
> Link!
>  
> Danke


Gruss
MathePower

Bezug
                
Bezug
Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Fr 10.12.2010
Autor: ella87

Aufgabe
Die Einleitung zur Aufgabe lautet:

Sei [mm]g \in \IN[/mm] mit [mm]g\ge 2[/mm]. Sei [mm]n \in \IN[/mm] und sei [mm][a_k ,a_{k-1},...,a_0] [/mm] die Schreibweise von n im g-adischen System.

Wir definieren die Quersumme [mm] Q_g (n)[/mm] von n im g-adischen System
[mm] Q_g (n)=\summe_{i=0}^{k}a_i[/mm]

und die alternierende Quersumme [mm] AQ_g (n)[/mm]von n im g-adischen System
[mm] AQ_g (n)=\summe_{i=0}^{k}(-1)^i a_i[/mm].


ich muss also beweisen

"7 teilt n" ist äquivalent zu "(7 teilt 2a ) +b"

[mm] 7|n \gdw \exists t_1 \in \IN[/mm] : [mm] 7 * t_1 = n [/mm]  und

[mm] 7|2a \gdw \exists t_2 \in \IN[/mm] : [mm] 7 * t_2 = 2a [/mm]  und

[mm] n=a_0 +a_1 *10+...+a_k *10^k [/mm]

[mm] a=a_2 *10^2 +a_3 *10^3 +...+a_k *10^k [/mm]

[mm] b=a_0 +a_1 *10 [/mm]

Wie baue ich das denn jetzt zusammen?
[mm] 7 = \bruch{n}{t_1} [/mm] [mm] \gdw[/mm] [mm] 7 = \bruch{2a}{t_2} + b^[/mm]

stimmt das so?


Ich hab grad gesehen, dass es Teilbarkeitsregeln für die Teilbarkeit duch 7 gibt, aber die kann ich doch nicht einfach verwenden oder????

Bezug
                        
Bezug
Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Fr 10.12.2010
Autor: MathePower

Hallo ella87,

> Die Einleitung zur Aufgabe lautet:
>  
> Sei [mm]g \in \IN[/mm] mit [mm]g\ge 2[/mm]. Sei [mm]n \in \IN[/mm] und sei [mm][a_k ,a_{k-1},...,a_0][/mm]
> die Schreibweise von n im g-adischen System.
>
> Wir definieren die Quersumme [mm]Q_g (n)[/mm] von n im g-adischen
> System
>  [mm]Q_g (n)=\summe_{i=0}^{k}a_i[/mm]
>  
> und die alternierende Quersumme [mm]AQ_g (n)[/mm]von n im g-adischen
> System
>  [mm]AQ_g (n)=\summe_{i=0}^{k}(-1)^i a_i[/mm].
>  
> ich muss also beweisen
>  
> "7 teilt n" ist äquivalent zu "(7 teilt 2a ) +b"
>  
> [mm]7|n \gdw \exists t_1 \in \IN[/mm] : [mm]7 * t_1 = n[/mm]  und
>  
> [mm]7|2a \gdw \exists t_2 \in \IN[/mm] : [mm]7 * t_2 = 2a[/mm]  und
>  
> [mm]n=a_0 +a_1 *10+...+a_k *10^k[/mm]
>  
> [mm]a=a_2 *10^2 +a_3 *10^3 +...+a_k *10^k[/mm]
>  
> [mm]b=a_0 +a_1 *10[/mm]
>  
> Wie baue ich das denn jetzt zusammen?
>  [mm]7 = \bruch{n}{t_1}[/mm] [mm]\gdw[/mm] [mm]7 = \bruch{2a}{t_2} + b^[/mm]
>  
> stimmt das so?
>  
> Ich hab grad gesehen, dass es Teilbarkeitsregeln für die
> Teilbarkeit duch 7 gibt, aber die kann ich doch nicht
> einfach verwenden oder????


Die Teilbarkeitsregeln sind hier nicht anzuwenden.

Stelle n als Linearkombination von a und b dar.


Gruss
MathePower

Bezug
        
Bezug
Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 10.12.2010
Autor: fred97

Wenn ich die Darstellungsweise richtig interpretiere ist

                   n= 100a+b= 98a+2a+b= 7*14+2a+b

Dann ist aber die Aussage

                    

                   $ 7|n [mm] \gdw [/mm] 7|(2a+b) $

(fast) trivial.

FRED

Bezug
                
Bezug
Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Fr 10.12.2010
Autor: ella87


> Wenn ich die Darstellungsweise richtig interpretiere ist
>  
> n= 100a+b= 98a+2a+b= 7*14+2a+b

wohin verschwindet das a????
man hat doch dann
n=  7*14*a+2a+b

da 7*14*a durch 7 teilbar ist muss dann auch 2a+b durch 7 teilbar sein, weil eben n (die Summe durch 7 teilbar ist)

ABER: in der Aufgabenstellung steht

[mm]7|n \gdw 7|2a+b[/mm] und nicht [mm]7|n \gdw 7|(2a+b)[/mm]

ist das nut ein Tippfehler?

> Dann ist aber die Aussage
>
>
>
> [mm]7|n \gdw 7|(2a+b)[/mm]







Meine Darstellung von a im vorherigen Eintrag ist falsch, oder?
[mm] a= a_2 *10^2 +.....+a_k * 10^k [/mm] aber es müsste heißen
[mm] a= a_2 *10^0 +.....+a_k * 10^{k-2} [/mm] oder?

>  
> FRED


Bezug
                        
Bezug
Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 07:32 Sa 11.12.2010
Autor: weightgainer

Hallo,


> > Wenn ich die Darstellungsweise richtig interpretiere ist
>  >  
> > n= 100a+b= 98a+2a+b= 7*14+2a+b
>  
> wohin verschwindet das a????
>  man hat doch dann
>  n=  7*14*a+2a+b

Das stimmt. Ich denke, dass es ein Tippfehler war. Das a ändert aber an der Aussage nichts, denn 7*14a ist ebenso durch 7 teilbar wie 7*14.

>  
> da 7*14*a durch 7 teilbar ist muss dann auch 2a+b durch 7
> teilbar sein, weil eben n (die Summe durch 7 teilbar ist)
>  
> ABER: in der Aufgabenstellung steht
>
> [mm]7|n \gdw 7|2a+b[/mm] und nicht [mm]7|n \gdw 7|(2a+b)[/mm]
>  
> ist das nut ein Tippfehler?
>  

Da kann man drüber streiten - in dieser Schreibweise mit dem senkrechten Strich als Symbol für "teilt" lässt man die Klammern häufig weg.
Lässt sich auch einfach nachvollziehen: Warum sollte man hinten noch ein "+b" dran schreiben? Was soll das für eine mathematische Aussage ergeben? Also 7|2a alleine ist die Aussage, dass 2a durch 7 teilbar ist. Welche Bedeutung hat (7|2a) + b ??? Also macht die Interpretation der Schreibweise 7|2a+b auf diese Weise überhaupt keinen Sinn. Ergo braucht man die Klammern um die 2a+b nicht.

> > Dann ist aber die Aussage
> >
> >
> >
> > [mm]7|n \gdw 7|(2a+b)[/mm]
>  
>
>
>
>
>
>
> Meine Darstellung von a im vorherigen Eintrag ist falsch,
> oder?
>  [mm]a= a_2 *10^2 +.....+a_k * 10^k[/mm] aber es müsste heißen
>  [mm]a= a_2 *10^0 +.....+a_k * 10^{k-2}[/mm] oder?

Stimmt - a ist praktisch der ganzzahlige Anteil bei der Division von n durch 100 und b ist der Rest bei der Division durch 100.

Deswegen ist FREDs Ansatz sehr clever und funktioniert so schnell.

Das wird auch die (bzw. eine) Teilbarkeitsregel durch 7 (die ich nicht auswendig kenne und jetzt auch nicht nachschaue) sein, die du hier nachgewiesen hast:

Ist 5422 durch 7 teilbar?
Nimm zweimal die 54 (das wäre hier der Wert für a) plus die 22 (das wäre b) und prüfe nur diese Zahl, die ja viel kleiner ist. Das gibt 130. Regel nochmal anwenden: zweimal die 1 plus 30 gibt 32. Ist also nicht durch 7 teilbar.

Ist 5425 durch 7 teilbar?
Gleiches Spiel: 2*54 + 25 = 133
Dann: 2*1 + 33 = 35
Ist durch 7 teilbar, also ist 5425 durch 7 teilbar.

Ist nur die Frage, ob die Regel viel schneller klappt als das direkte Aufteilen der Zahl 5425 = 4900 + 525
525 = 490 + 35
Fertig.
Aber gut - ist doch schön, wenn man sich auch einen anderen Weg überlegt hat. Vielleicht ist er ja für Primzahlalgorithmen gut oder so :-).

>  
> >  

> > FRED
>  

lg weightgainer

Bezug
                        
Bezug
Operator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Sa 11.12.2010
Autor: fred97


> > Wenn ich die Darstellungsweise richtig interpretiere ist
>  >  
> > n= 100a+b= 98a+2a+b= 7*14+2a+b
>  
> wohin verschwindet das a????


Das war in der Tat ein Tippfehler:

n= 100a+b= 98a+2a+b= 7*14a+2a+b

FRED

>  man hat doch dann
>  n=  7*14*a+2a+b
>  
> da 7*14*a durch 7 teilbar ist muss dann auch 2a+b durch 7
> teilbar sein, weil eben n (die Summe durch 7 teilbar ist)
>  
> ABER: in der Aufgabenstellung steht
>
> [mm]7|n \gdw 7|2a+b[/mm] und nicht [mm]7|n \gdw 7|(2a+b)[/mm]
>  
> ist das nut ein Tippfehler?
>  
> > Dann ist aber die Aussage
> >
> >
> >
> > [mm]7|n \gdw 7|(2a+b)[/mm]
>  
>
>
>
>
>
>
> Meine Darstellung von a im vorherigen Eintrag ist falsch,
> oder?
>  [mm]a= a_2 *10^2 +.....+a_k * 10^k[/mm] aber es müsste heißen
>  [mm]a= a_2 *10^0 +.....+a_k * 10^{k-2}[/mm] oder?
>  
> >  

> > FRED
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de