www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Optimallösung mit Lagrange
Optimallösung mit Lagrange < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimallösung mit Lagrange: Idee, Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 21:38 Mo 12.09.2011
Autor: tiku

Aufgabe 1
Bestimmen Sie wenn möglich jeweils den Optimalwert und eine Optimallösung der folgenden Optimierungsprobleme:

Minimiere    2*x + y
unter      [mm] x^{2} [/mm] + [mm] y^{2} [/mm] = 9
           x, y [mm] \in \IR [/mm]

Aufgabe 2
Maximiere    2*x + y
unter           [mm] x^{2} [/mm] + [mm] y^{2} [/mm] = 9
                   x, y [mm] \in \IR [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Abend. Ich bin das erste Mal hier unterwegs, von daher hoffe ich, dass
ich alles richtig gemacht habe und im richtigen Unterforum unterwegs bin.

Das habe ich bisher gemacht:
Lagrange-Funktion gebildet:

[mm] L(x,y,\lambda) [/mm] = 2*x + y + [mm] \lambda*(x^{2} [/mm] + [mm] y^{2} [/mm] - 9)

Partiell abgeleitet:

1. [mm] \bruch{\partial L}{\partial x} [/mm] = 2 + [mm] 2*x*\lambda [/mm]

2. [mm] \bruch{\partial L}{\partial y} [/mm] = 1 + [mm] 2*y*\lambda [/mm]

3. [mm] \bruch{\partial L}{\partial \lambda} [/mm] = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] - 9

Ableitungen null-gesetzt:

1. 2 + [mm] 2*x*\lambda [/mm] = 0 [mm] \Rightarrow [/mm] x = - [mm] \bruch{1}{\lambda} [/mm]

2. 1 + [mm] 2*y*\lambda [/mm] = 0 [mm] \Rightarrow [/mm] y = - [mm] \bruch{1}{2*\lambda} [/mm]

Wenn ich dies aber nun in die 3. Ableitung einsetzen will, komme ich auf kein gescheites [mm] \lambda. [/mm] Bin allerdings auch sehr schlecht in umformen.
Könnte mir vielleicht jemand einen Anstoß geben, wie ich auf die richtigen Extremwerte für x, y und [mm] \lambda [/mm] komme? Zudem wüsste ich gerne wo der Unterschied besteht zwischen der Minimierungs- und Maximierungsaufgabe. Wären doch am Ende die selben Ergebnisse? Das Überprüfen per Hesse-Matrix sollte dann kein Problem mehr für mich sein.

Danke
Tim

        
Bezug
Optimallösung mit Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mo 12.09.2011
Autor: barsch

Hallo und willkommen im Matheraum,


> Bestimmen Sie wenn möglich jeweils den Optimalwert und
> eine Optimallösung der folgenden Optimierungsprobleme:
>  
> Minimiere    2*x + y
>  unter      [mm]x^{2}[/mm] + [mm]y^{2}[/mm] = 9
>             x, y [mm]\in \IR[/mm]
>  Maximiere    2*x + y
>  unter           [mm]x^{2}[/mm] + [mm]y^{2}[/mm] = 9
>                     x, y [mm]\in \IR[/mm]
>  Ich habe diese Frage in
> keinem Forum auf anderen Internetseiten gestellt.
>  
> Guten Abend. Ich bin das erste Mal hier unterwegs, von
> daher hoffe ich, dass
>  ich alles richtig gemacht habe und im richtigen Unterforum
> unterwegs bin.

das passt schon. Mit der Zeit, wenn man den richtigen Überblick hat, findet man das richtige Unterforum. Dass du eigene Lösungsansätze angibst, ist top [daumenhoch]

> Das habe ich bisher gemacht:
>  Lagrange-Funktion gebildet:
>  
> [mm]L(x,y,\lambda)[/mm] = 2*x + y + [mm]\lambda*(x^{2}[/mm] + [mm]y^{2}[/mm] - 9)

Korrekt.

>  
> Partiell abgeleitet:
>  
> 1. [mm]\bruch{\partial L}{\partial x}[/mm] = 2 + [mm]2*x*\lambda[/mm]

ja.

>  
> 2. [mm]\bruch{\partial L}{\partial y}[/mm] = 1 + [mm]2*y*\lambda[/mm]
>  

ja.

> 3. [mm]\bruch{\partial L}{\partial \lambda}[/mm] = [mm]x^{2}[/mm] + [mm]y^{2}[/mm] - 9


ja.

>  
> Ableitungen null-gesetzt:
>  
> 1. 2 + [mm]2*x*\lambda[/mm] = 0 [mm]\Rightarrow[/mm] x = - [mm]\bruch{1}{\lambda}[/mm]
>  
> 2. 1 + [mm]2*y*\lambda[/mm] = 0 [mm]\Rightarrow[/mm] y = - [mm]\bruch{1}{2*\lambda}[/mm]

ja.


> Wenn ich dies aber nun in die 3. Ableitung einsetzen will,
> komme ich auf kein gescheites [mm]\lambda.[/mm] Bin allerdings auch
> sehr schlecht in umformen.

Naja, einfach mal einsetzen:

3. [mm]x^2+y^2-9=(-\bruch{1}{\lambda})^2+(-\bruch{1}{2\lambda})^2-9=\bruch{1}{\lambda^2}+\bruch{1}{4\lambda^2}-9=\bruch{4}{4\lambda^2}+\bruch{1}{4\lambda^2}-9=\bruch{5}{4\lambda^2}-9=0[/mm]

Das jetzt nach [mm]\lambda[/mm] umzustellen, dürfte kein Problem mehr sein.

>  Könnte mir vielleicht jemand einen Anstoß geben, wie ich
> auf die richtigen Extremwerte für x, y und [mm]\lambda[/mm] komme?
> Zudem wüsste ich gerne wo der Unterschied besteht zwischen
> der Minimierungs- und Maximierungsaufgabe. Wären doch am
> Ende die selben Ergebnisse?

Vorsicht. Lagrange ist für Minimierungsprobleme angelegt. Du musst dein Maximierungs- in ein Minimierungsproblem umschreiben!

> Das Überprüfen per
> Hesse-Matrix sollte dann kein Problem mehr für mich sein.
>  
> Danke
>  Tim

Gruß
barsch


Bezug
                
Bezug
Optimallösung mit Lagrange: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mo 12.09.2011
Autor: tiku

Danke für die schnelle Antwort barsch! Hat sehr geholfen. Werde mich nun mal an den Rest ransetzen, danke.

Tim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de