www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Optimierung
Optimierung < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung: Anwendungsaufg.
Status: (Frage) beantwortet Status 
Datum: 21:47 Mi 07.11.2007
Autor: Nicole11

Aufgabe
Problemstellung

Es soll ein Ernährungsplan erstellt werden, bei dem mindestens 21 ME
Kalorien und mindestens 12 ME Vitamine pro Essensration angeboten
werden. Dafür stehen fünf Lebensmittelsorten zur Verfügung, die je ME
den in der Tabelle angegebenen Kalorien-bzw. Vitamingehalt aufweisen.
Die Kosten, die pro Lebensmittelration entstehen, sind ebenfalls in der
Tabelle dargestellt. Wie muss der Ernährungsplan lauten, wenn die dabei
entstehenden Kosten minimal sein sollen?

                   Sorte 1   Sorte 2   Sorte 3    Sorte 4     Sorte 5
Kalorien             1           0            1              1               2
Vitamine             0           1           2               1              1
Kosten              20          20          31            11            12

Aufgaben:


a) Formulieren Sie diese Aufgabe als Minimierungsproblem.
b) Formulieren Sie dazu das duale Maximierungsproblem.
c) Lösen Sie das duale Maximierungsproblem mit dem Simplex-Verfahren


und bestimmen Sie die optimale Lösung des ursprünglichen

Minimierungsproblems!

Hallo!
Ich hab ein Problem, ich muss diese Aufgabe Freitag in der Schule vortragen und komme in der Simplextabelle nicht weiter...für Hilfe wär ich sehr dankbar!

Meine Lösungen schicke ich als Anhang mit!


        
Bezug
Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Mi 07.11.2007
Autor: Nicole11

Ich habe gerade gesehen, das die Tabelle in der Aufgabenstellung verzehrt ist, in meinem Anhang stell ich sie richtig dar!

Dateianhänge:
Anhang Nr. 1 (Typ: xls) [nicht öffentlich]
Bezug
                
Bezug
Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 12.11.2007
Autor: Nicole11

Auch wenn meine Frage fällig ist, bin ich doch noch an einer Antwort interessiert...so ganz klar ist mir die Aufgaben nämlich nicht geworden.

DANKE!

Bezug
        
Bezug
Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Fr 23.11.2007
Autor: Nicole11

Ich bin immer noch an einer Antwort meiner Frage interessiert u. würde mich freuen wenn mir jemand helfen würde.
Danke ;-)

Bezug
        
Bezug
Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Fr 23.11.2007
Autor: koepper

Hallo Nicole,

tut mir sehr leid, daß dir noch niemand geholfen hat. Vielleicht liegt es auch etwas an der .xls-Datei. Ich kann solche Dateien aus Sicherheitsgründen nicht öffnen, vielleicht geht es vielen anderen genau so.

Zur Sache:

Es soll ein Ernährungsplan erstellt werden, bei dem mindestens 21 ME
Kalorien und mindestens 12 ME Vitamine pro Essensration angeboten
werden. Dafür stehen fünf Lebensmittelsorten zur Verfügung, die je ME
den in der Tabelle angegebenen Kalorien-bzw. Vitamingehalt aufweisen.
Die Kosten, die pro Lebensmittelration entstehen, sind ebenfalls in der
Tabelle dargestellt. Wie muss der Ernährungsplan lauten, wenn die dabei
entstehenden Kosten minimal sein sollen?

                   Sorte 1   Sorte 2   Sorte 3    Sorte 4     Sorte 5
Kalorien             1           0            1              1               2
Vitamine            0           1           2               1              1
Kosten            20          20          31            11            12

Aufgaben:
a) Formulieren Sie diese Aufgabe als Minimierungsproblem.
b) Formulieren Sie dazu das duale Maximierungsproblem.
c) Lösen Sie das duale Maximierungsproblem mit dem Simplex-Verfahren

Bezeichne die zu verwendenden Mengen an Sorte i mit [mm] $x_i$. [/mm]
Aus dem Text entnehmen wir die Kalorienrestriktion
[mm] $x_1 [/mm] + [mm] x_3 [/mm] + [mm] x_4 [/mm] + [mm] 2x_5 \ge [/mm] 21$
und die Vitaminrestriktion
[mm] $x_2 [/mm] + [mm] 2x_3 [/mm] + [mm] x_4 [/mm] + [mm] x_5 \ge [/mm] 12$
Die Zielfunktion lautet
[mm] $\min \quad 20x_1 [/mm] + [mm] 20x_2 [/mm] + [mm] 31x_3 [/mm] + [mm] 11x_4 [/mm] + [mm] 12x_5$ [/mm]

Seien $A [mm] \in \IR_{m, n}, [/mm] b [mm] \in \IR^m$ [/mm] und $c [mm] \in \IR^n.$ [/mm] Zu dem linearen Optimierungsproblem
$P [mm] \colon \quad \min c^T [/mm] x [mm] \quad \text{s.t.} \quad [/mm] A x [mm] \geq [/mm] b, x [mm] \geq [/mm] 0, x [mm] \in \IR^n$ [/mm]

ist

$D [mm] \colon \quad \max b^T \pi \quad \text{s.t.} \quad A^T \pi \leq [/mm] c, [mm] \pi \geq [/mm] 0, [mm] \pi \in \IR^m$ [/mm]

das duale Problem.

Das duale Problem hat also die Zielfunktion [mm] $\max \quad [/mm] 21 [mm] \pi_1 [/mm] + 12 [mm] \pi_2$ [/mm] und 5 Restriktionen. Den Rest schaffst du sicher, oder?

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de