www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Optimierungs- & Extremwertaufg
Optimierungs- & Extremwertaufg < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungs- & Extremwertaufg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 So 19.03.2006
Autor: Jay.Kay

Aufgabe
Gegeben sind die Funktionen "f" und "g" durch die Funktionsgleichungen f(x)= [mm] \bruch{1}{4}x²- \bruch{3}{2}x+ \bruch{9}{4} [/mm] und g(x)=0,5x+ [mm] \bruch{9}{4} [/mm]

Die Gerade x=u (0 [mm] \leu \le8) [/mm] schneidet die Graphen der beiden Funktion in den Punkten R und S. Bestimmen sie "u" so, dass die Entfernung d(u) der Punkte R und S maximal wird.  

Guten Abend miteinander!
Diese Frage bereitet mir Kopf zerbrechen und ich kann einfach nicht verstehen wie des gehen soll ;) drum bitte ich um hilfe.

Ich habe mir überlegt die beiden Gleichungen gleich zustellen um es in u aufzuösen, damit ich die Extremwerte ausrechnen kann. Aber meine Ergebnisse bringen nur mist und ich weiß nicht wie ich wirklich vorgehen soll....


Hiermit versichere ich, dass ich diese Aufgabe in keinem anderen Forum hineingestellt habe!!!

        
Bezug
Optimierungs- & Extremwertaufg: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 So 19.03.2006
Autor: hase-hh

Moin!

also ich habe zuerst die Extremstellen der beiden Funktionen f und g
ausgerechnet und die Funktionen skizziert. Dies ist zwar nicht unbedingt notwendig, erleichert aber die Lösung.

Dann weiss ich:

Die beiden Funktionen schneiden sich in (0;9/4) und (8; 25/4).

Ferner weiss ich, dass der Funktionswert von g zwischen  0 < x < 8  größer ist als von f.

Nun zur Aufgabe. Es soll das u (mit  x = u)  bestimmt werden, für das die beiden Schnittpunkte R(u ; g(u)) und  S (u; f(u)) den größten Abstand haben.

[Nach meiner Skizze würde ich vermuten, daß dies für u zwischen 3 und 4 der Fall ist.]

Ich stelle also meine Zielfunktion auf:

h(u) = g(u) - f(u)

h(u) = 1/2 u + 9/4 - ( 1/4 [mm] u^2 [/mm] - 3/2 u + 9/4)

h(u) = - 1/4 [mm] u^2 [/mm] + 2 u

und bestimme dann das Maximum.

h'(u) = - 1/2 u + 2     Nullstelle bei u = 4

h''(u) = - 1/2      =>  HP (4 / 4)

Also weiss ich außerdem, dass meine maximale Entfernung 4 LE beträgt.

Hoffe, ich konnte weiterhelfen!









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de