www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ordnung
Ordnung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:31 Mi 18.11.2009
Autor: mb588

Aufgabe
Sei [mm] x\in S_{n} [/mm] ein Element. welches aus t Zyklen der Länge m besteht (also tm=n). Dann gilt [mm] |C_{S_{n}}|=t!m^{t}. [/mm]

huhu.
Also ich hab mir erstmal gedacht:
[mm] a:=(a_{1}a_{2}...a_{m}) [/mm] hat diese Form. und davon gibt es denn t stück. Das heißt ich kann diese auf t! arten anordnen. Ist das soweit richtig gedacht? Jetzt kann ich mir aber leider nicht [mm] m^{t} [/mm] erklären.

Danke schon mal im voraus.

        
Bezug
Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:53 Do 19.11.2009
Autor: felixf

Hallo!

> Sei [mm]x\in S_{n}[/mm] ein Element. welches aus t Zyklen der Länge
> m besteht (also tm=n). Dann gilt [mm]|C_{S_{n}}|=t!m^{t}.[/mm]

Magst du uns verraten, was [mm] $C_{S_n}$ [/mm] sein soll? Und was dies mit $x$ zu tun hat?

LG Felix


Bezug
                
Bezug
Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Do 19.11.2009
Autor: mb588

Also [mm] C_{S_{n}}(x) [/mm] ist der Zentralisator und nach definition dann:

[mm] C_{S_{n}}(x)=\{s\inS_{n}:s*x=x*s\} [/mm]

Bezug
        
Bezug
Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:23 Sa 21.11.2009
Autor: felixf

Hallo!

> Sei [mm]x\in S_{n}[/mm] ein Element. welches aus t Zyklen der Länge
> m besteht (also tm=n). Dann gilt [mm]|C_{S_{n}(x)}|=t!m^{t}.[/mm]
>
>  huhu.
>  Also ich hab mir erstmal gedacht:
>  [mm]a:=(a_{1}a_{2}...a_{m})[/mm] hat diese Form. und davon gibt es
> denn t stück.

Sehr unschoen aufgeschrieben, aber du meinst offenbar das richtige.

> Das heißt ich kann diese auf t! arten
> anordnen. Ist das soweit richtig gedacht?

Ich tippe eher auf "Nein".

> Jetzt kann ich
> mir aber leider nicht [mm]m^{t}[/mm] erklären.

Die von einem $m$-Zykel erzeugte Untergruppe hat $m$ Elemente. Und du hast $t$ $m$-Zykel, also [mm] $m^t$ [/mm] Moeglichkeiten fuer jeden dieser Zykel einen aus der davon erzeugten UG zu waehlen.

Du hast eine Permutation $x = [mm] (a_{11} \cdots a_{1m}) \cdots (a_{t1} \cdots a_{tm})$. [/mm] Wenn $y [mm] \in S_n$ [/mm] jetzt ein anderes Element ist: wie muss $y$ aussehen, wenn $x y = y x$ gelten soll?

Zeige, dass $y = [mm] (a_{\pi(1) 1} \cdots a_{\pi(1) m})^{a_1} \cdots (a_{\pi(t) 1} \cdots a_{\pi(t) m})^{a_t}$ [/mm] ist mit [mm] $\pi \in S_t$ [/mm] und [mm] $a_1, \dots, a_t \in \{ 0, \dots, m - 1 \}$. [/mm]

LG Felix


Bezug
                
Bezug
Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Mo 23.11.2009
Autor: mb588

Ah cool dankeschön ich habs ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de