www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Ordnung/Abelsche Gruppe
Ordnung/Abelsche Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung/Abelsche Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Mi 29.12.2010
Autor: Joan2

Aufgabe
Man zeige: Sind die Ordnunfen der Elemente einer Gruppe [mm] \le [/mm] 2, so ist die Gruppe abelsch.

Hallo,

als Lösung hatten wir in der Übung besprochen:

[mm] $\psi: [/mm] G [mm] \to [/mm] G, a [mm] \mapsto a^2$ [/mm]

[mm] $\psi(ab) [/mm] = [mm] (ab)^2 [/mm] = 1 = [mm] a^2 [/mm] * [mm] b^2 [/mm] (wobei [mm] ~a^2, b^2 [/mm] = 1) [mm] \Rightarrow \psi(a) [/mm] * [mm] \psi(b) \Rightarrow$ [/mm] G abelsch

Dass G abelsch ist, folgt aus einem letzten Übungsblatt. Das Einzige, was ich nicht verstehe ist: Warum gilt [mm] $\psi(ab) [/mm] = [mm] (ab)^2 [/mm] = 1$


Viele Grüße,
Joan


        
Bezug
Ordnung/Abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mi 29.12.2010
Autor: Arcesius

Hallo


> Man zeige: Sind die Ordnunfen der Elemente einer Gruppe [mm]\le[/mm]
> 2, so ist die Gruppe abelsch.
>  Hallo,
>  
> als Lösung hatten wir in der Übung besprochen:
>  
> [mm]\psi: G \to G, a \mapsto a^2[/mm]
>  
> [mm]\psi(ab) = (ab)^2 = 1 = a^2 * b^2 (wobei ~a^2, b^2 = 1) \Rightarrow \psi(a) * \psi(b) \Rightarrow[/mm]
> G abelsch
>  
> Dass G abelsch ist, folgt aus einem letzten Übungsblatt.
> Das Einzige, was ich nicht verstehe ist: Warum gilt
> [mm]\psi(ab) = (ab)^2 = 1[/mm]

Es ist ja [mm]\psi: a \mapsto a^2[/mm], also [mm]\psi(ab) = (ab)^2[/mm]
Da [mm]a \in G[/mm] und [mm]b \in G[/mm] folgt [mm]ab \in G[/mm]. Und da die Ordnung aller Elemente [mm]\le 2[/mm] ist, so insbesondere auch die Ordnung von [mm]ab[/mm]. Somit gilt entweder [mm]ab = 1[/mm] oder/und [mm](ab)^2 = 1[/mm].

Ist somit deine Frage beantwortet?

>
> Viele Grüße,
>  Joan
>

  
Grüsse, Amaro

Bezug
                
Bezug
Ordnung/Abelsche Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mi 29.12.2010
Autor: Joan2

Achso :) Vielen Dank für die gute Erklärung.

Gruß
Joan

Bezug
                
Bezug
Ordnung/Abelsche Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mi 29.12.2010
Autor: Joan2

Mir ist doch eine Frage aufgekommen :(

Es heißt ja, dass die Ordnung [mm] \le [/mm] 2 ist. Dann müsste doch auch  $ab = 2$ gelten?

Bezug
                        
Bezug
Ordnung/Abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mi 29.12.2010
Autor: Arcesius

Hallo


> Mir ist doch eine Frage aufgekommen :(
>  
> Es heißt ja, dass die Ordnung [mm]\le[/mm] 2 ist. Dann müsste doch
> auch  [mm]ab = 2[/mm] gelten?

Was meinst du mit $ab = 2$? Es gilt $Ord(ab) [mm] \le [/mm] 2$.

Was soll denn $ab = 2 [mm] \in [/mm] G$ bedeuten?

Grüsse, Amaro

Bezug
                                
Bezug
Ordnung/Abelsche Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Mi 29.12.2010
Autor: Joan2

Ich dachte $ab = 1$ kommt daher, weil gilt, dass die Ordnung [mm] \le [/mm] 2 ist. Und da kleiner gleich ist, müsste doch auch ab = 2 gelten?

Bezug
                                        
Bezug
Ordnung/Abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mi 29.12.2010
Autor: Arcesius

Hallo


> Ich dachte [mm]ab = 1[/mm] kommt daher, weil gilt, dass die Ordnung
> [mm]\le[/mm] 2 ist.

Genau. Mit 1 wird das neutrale Element bezeichnet.. wenn du es dir anders gewohnt bist (vielleicht heisst bei euch das neutrale Element [mm]e[/mm]), kannst du auch schreiben [mm]ab = e[/mm] (oder/und [mm](ab)^2 = e[/mm]).. Es ist nur ne Frage der Bezeichnung des neutralen Elements.. aber die 1 steht hier nicht für die 1 aus de natürlichen Zahlen, das sollte dir klar sein.

> Und da kleiner gleich ist, müsste doch auch
> ab = 2 gelten?

Nein. Kennst du denn die Definition der Ordnung eines Elements?

Wenn [mm]a \in G[/mm], dann ist die Ordnung von [mm]a[/mm] in [mm]G[/mm] das kleinste [mm]n \in \mathbb{N}[/mm], so dass [mm]a^{n} = e[/mm] (oder = 1, je nach Bezeichnung).

Aber, dass das neutrale Element mit [mm]1[/mm] bezeichnet wird ist nur eine Konvention.. aber da du es mit einer beliebigen Gruppe zu tun hast (mit gewissen Bedingungen), kannst du ja nicht wissen, ob [mm]2 \in G[/mm]..

Das neutrale Element ist aber immer in ner Gruppe drin. Somit gilt [mm]1 \in G[/mm] für jede beliebige Gruppe [mm]G[/mm].

Ich hoffe, deine Verwirrung löst sich langsam auf.. :)


Grüsse, Amaroi

Bezug
                                                
Bezug
Ordnung/Abelsche Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mi 29.12.2010
Autor: Joan2

Juhuu, Verwirrung gelöst [mm] \o/ [/mm]

Danke ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de