www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ordnung aller Elemente
Ordnung aller Elemente < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung aller Elemente: Gruppe (S4, °)
Status: (Frage) beantwortet Status 
Datum: 11:41 Di 14.12.2004
Autor: squeezer

Hallo

Ich habe folgendes Problem bezüglich der Ordnung von Gruppen.
Die Aufgabe die ich lössen muss ist folgende:

Bestimmen Sie die Ordnung aller Elemente der Gruppe (S4, °) (Permutationsgruppe).

Ich hab folgendes versucht
e = (1)
s = (12)
t = (123)
u =(1234)
und dann [mm] s^2 t^3 u^4 [/mm]
s°t, t°s, .... angeschrieben.

Ist das die richtige Methode, oder muss ich alle Elemente auflisten oder wie funktioniert das genau.


Ich bin sehr dankbar über jede Hilfe

mfg

Marc

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ordnung aller Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Di 14.12.2004
Autor: Hexe

Also so wirds nichts werden, weil [mm] \not= S_{4} [/mm] , das heisst so bekommst du gar nicht alle Elemente.  Aber schreib doch einfach o((ij))=2 mit [mm] i,j\in \{1,2,3,4\} [/mm] i<j und o((ijk))=3 mit i,j,k [mm] \in\{1,2,3,4\} [/mm] i<j,k und [mm] j\not=k [/mm]  und o((1ijk))=4 mit [mm] i,j,k\in\{2,3,4\} [/mm] paarweise verschieden.
Ansonsten könntest du die 24 elemente auch hinschreiben.

Bezug
                
Bezug
Ordnung aller Elemente: Rückfrage zur Ordnung...
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 14.12.2004
Autor: squeezer

ok
vielen dank

Ich hab jetzt diese Elemente alle aufgelistet. Woher weiss ich denn jetzt welches Element welche Ordnung auf der Gruppe (S4, °) hat.
Reicht es einfach die Anzahl der i j k l zu zählen, oder kann man die irgendwie formell regruppieren?


mfg

Marc

Bezug
                        
Bezug
Ordnung aller Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mi 22.12.2004
Autor: Hexe

sorry hab die Frage glatt übersehen, aber besser spät als nie

Also die Ordnung von a bekommst du wenn du [mm] a^2, a^3, a^4 [/mm] usw rechnest, so lange bis [mm] a^k=id [/mm] rauskommt und k ist dann die Ordnung von a. Also z.B. [mm] (123)^2=(132) [/mm]  (132)(123)=id also ist o((123))=3.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de