www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Ordnung ellipt. Kurve
Ordnung ellipt. Kurve < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung ellipt. Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Mo 22.02.2016
Autor: valoo

Aufgabe
Sei $ p [mm] \ge [/mm] 3 $ eine Primzahl. Zeigen Sie, dass die Anzahl der [mm] \IF_{p}-rationalen [/mm] Punkte der elliptischen Kurve $ E : [mm] y^{2} [/mm] = [mm] x^{3} [/mm] + x $ durch 4 teilbar ist.

Hallo allerseits!

Falls $ p [mm] \equiv [/mm] \ 3 \ mod \ 4 $, so ist  $ [mm] \# [/mm] E ( [mm] \IF_{p} [/mm] ) = p + 1 $. Also stimmt hier die Behauptung. Wie man dies aber im anderen Fall zeigt, ist mir nicht klar. Im Allgemeinen gilt:
$ [mm] \# [/mm] E ( [mm] \IF_{p} [/mm] ) = p + 1 + [mm] \sum_{x \in \IF_{p}} \big( \frac{x^{3} + x}{p} \big) [/mm] $
sodass es reichen wuerde zu zeigen, dass
$ [mm] \sum_{x \in \IF_{p}} \big( \frac{x^{3} + x}{p} \big) \equiv [/mm] \ 2 \ mod \ 4 $
Ich wuesste allerdings nicht, wie ich das anstellen sollte.

Alternative Idee waere ein Element der Ordnung 4 zu finden, dann muss die Gruppenordnung durch 4 teilbar sein. Also bin ich herangegangen, hab ein Element $ P = ( [mm] \alpha, \beta [/mm] ) $ genommen, $ 2 P $ ausgerechnet und die zweite Koordinate 0 gesetzt, dabei kommt bis auf $ alpha = 0 $, was auszuschliessen ist, nur ein haessliches Polynom bei raus...

Wie also kann man dies sonst zeigen?

LG
valoo

        
Bezug
Ordnung ellipt. Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Mo 22.02.2016
Autor: hippias

Meine Idee fur den Fall [mm] $p\equiv_{4} [/mm] 1$ wäre eine geeignete Permutation auf der Lösungsmenge $E$ zu definieren, die eine zykliche Gruppe der Ordnung $4$ erzeugt. Wenn diese Gruppe fixpunktfrei (im wesentlichen) operiert, dann folgt ebenfalls die Behauptung. Offensichtlich ist mit $(x,y)$ auch $(x,-y)$ eine Lösung. Aber unter den gemachten Voraussetzungen gibt es mit $(x,y)$ auch eine Lösung $(-x,y')$...

Bezug
        
Bezug
Ordnung ellipt. Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Di 23.02.2016
Autor: statler


> Sei [mm]p \ge 3[/mm] eine Primzahl. Zeigen Sie, dass die Anzahl der
> [mm]\IF_{p}-rationalen[/mm] Punkte der elliptischen Kurve [mm]E : y^{2} = x^{3} + x[/mm]
> durch 4 teilbar ist.

Guten Morgen!

> Falls [mm]p \equiv \ 3 \ mod \ 4 [/mm], so ist  [mm]\# E ( \IF_{p} ) = p + 1 [/mm].

Ja. Für p [mm] \equiv [/mm] 3 (4) ist -1 quadratischer Nichtrest; ist f(x) = [mm] x^3 [/mm] + x, so ist [mm] \big( \frac{f(x)}{p} \big) [/mm] = [mm] -\big( \frac{f(-x)}{p}\big), [/mm] also ist [mm] \sum_{x \in \IF_{p}} \big( \frac{f(x)}{p} \big) [/mm] = [mm] \sum_{x \in \IF_{p}^{x}} \big( \frac{f(x)}{p} \big) [/mm] = 0

> Also stimmt hier die Behauptung. Wie man dies aber im
> anderen Fall zeigt, ist mir nicht klar. Im Allgemeinen
> gilt:
>  [mm]\# E ( \IF_{p} ) = p + 1 + \sum_{x \in \IF_{p}} \big( \frac{x^{3} + x}{p} \big)[/mm]
>  
> sodass es reichen wuerde zu zeigen, dass
> [mm]\sum_{x \in \IF_{p}} \big( \frac{x^{3} + x}{p} \big) \equiv \ 2 \ mod \ 4[/mm]
>  
> Ich wuesste allerdings nicht, wie ich das anstellen
> sollte.

Dann mal zu: Für p [mm] \equiv [/mm] 1 (4) ist -1 quadratischer Rest. Damit hat f(x) = [mm] x(x^2 [/mm] + 1) die Nullstellen x = 0 und x = [mm] \pm [/mm] y mit [mm] y^2 [/mm] = -1. Außerdem ist   [mm] \big( \frac{f(x)}{p} \big) [/mm] = [mm] \big( \frac{f(-x)}{p} \big). [/mm]
Lasse ich zunächst x das positive Halbsystem 1, [mm] \dots [/mm] , [mm] \bruch{p-1}{2} [/mm] durchlaufen, so gibt es genau einmal (für y [mm] \in \{1, \dots , \bruch{p-1}{2} \} [/mm] ) den Wert 0. Da [mm] \bruch{p-1}{2} [/mm] gerade ist, gibt es in der (Halb-)Summe r-mal +1 und s-mal -1, und r+s ist ungerade. Damit ist auch die (Halb-)Summe ungerade und folglich die volle Summe [mm] \equiv [/mm] 2 (4).

Gruß aus HH
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de