www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Ordnung von Z*
Ordnung von Z* < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnung von Z*: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Sa 01.03.2008
Autor: holwo

Aufgabe
Seien p,q,r verschiedene Primzahlen.
Zeigen Sie: [mm]\phi(pqr) = (p-1)(q-1)(r-1)[/mm]

Hallo,

ich habe diese Frage in keinen anderen Foren auf anderen Internetseiten gestellt.


Ich habe ein kleines Problem wo ich nicht weiterkomme.
Definition:
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
wobei n|a bedeutet n teilt a
Eine Frage die ich habe ist, wenn n=p.q, dann hat n doch 4 teiler: 1,p,q,und pq.
Bei 1 würde er verschwinden, aber bei p.q? Z.b. p=2, q=3, p.q=6, 6 teilt 6. warum wird er bei der Berechnung oben von phi(p.q) weggelassen?

Und wenn ich phi(p.q.r) berechnen muss für 3 primzahlen, was soll ich nehmen?
Ich würde p, q, r, p.q, p.r , q.r und p.q.r nehmen, (alle teilen p.q.r) aber in der musterlösung werden p.q, p.r , q.r , p.q.r auch weggelassen, wie oben..

Und bei phi(p^(2).q) würde ich [mm] p,p^2,q,pq,p^{2}q [/mm] nehmen, aber dann bekomme ich nicht was in der musterlösung steht

Irgendwie verstehe ich das dann nicht. Oben werden Zahlen nicht genommen, die auch teiler von n sind

Vielen Dank



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Ordnung von Z*: Antwort
Status: (Antwort) fertig Status 
Datum: 03:50 So 02.03.2008
Autor: Zneques

Hallo,

> wobei n|a bedeutet n teilt a

Richtig.

Aber :
... wobei p|n bedeutet p teilt n und [mm] p\in\IP [/mm] eine Primzahl.
Richtiger. ;)

Da p*q ein Produkt zweier Zahlen [mm] (\not=1) [/mm] ist, ist es keine Primzahl.
Du darfst also nur einzelnen Primzahlen der Primfaktorzerlegung von n einsetzen.

Ciao.

Bezug
                
Bezug
Ordnung von Z*: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:06 So 02.03.2008
Autor: holwo

vielen dank!  das bringt mich weiter :-)

du hast recht, p muss da eine primzahl sein ... aber warum?
meine definition von a|b ist dass a b teilt. Bei der Definition von phi oben sehe ich kein Hinweis darauf, dass p prim sein muss, bis auf den namen "p", aber nichts mehr..
wie kommt man dann darauf? :-)

Bezug
                        
Bezug
Ordnung von Z*: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 So 02.03.2008
Autor: felixf

Hallo

> du hast recht, p muss da eine primzahl sein ... aber
> warum?

Konvention. Wenn man $p [mm] \mid [/mm] n$ oder so schreibt unter einem Produktzeichen, ist normalerweise gemeint, dass man ueber alle Primzahlen $p$ (oder, je nach Kontext, ueber alle Primideale $p$ oder alle Stellen $p$) iteriert, die $n$ teilen. Das sollte man aber normalerweise dabeischreiben (grad wenn man diese Notation das erste oder die ersten Male benutzt), etwa ``... [mm] $\prod_{p \mid n} [/mm] ...$, wobei das Produkt ueber alle Primzahlen $p$ geht, die $n$ teilen.''

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de