www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ordnungen und Nebenklassen
Ordnungen und Nebenklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungen und Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 So 23.02.2014
Autor: Infoandi

Aufgabe
Die Einheiten des Rings [mm] \IZ_{40} [/mm] bilden mit der Multiplikation modulo 40 eine Gruppe G.
a) Welche Ordnungen sind für die Untergruppen von G möglich?
c) Bestimmen Sie die Nebenklasse, die die Zahl 3 enthält.

Hallo,
die Ordnung der Gruppe G ist |G|=16 also würde ich mal blind raten die Ordnungen der Untergruppen können nur [mm] \le [/mm] 16 sein und sind Teiler von 16 also 8,4,2,1. Oder muss ich das genauer bestimmen ?

für c)
Muss ich da die Untergruppe von 3 erzeugen und die Elemente von <3> sind dann die Nebenklassen ? Also hier 3,9,27,1.

danke im voraus,
andreas

        
Bezug
Ordnungen und Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 23.02.2014
Autor: hippias


> Die Einheiten des Rings [mm]\IZ_{40}[/mm] bilden mit der
> Multiplikation modulo 40 eine Gruppe G.
>  a) Welche Ordnungen sind für die Untergruppen von G
> möglich?
>  c) Bestimmen Sie die Nebenklasse, die die Zahl 3
> enthält.
>  Hallo,
>  die Ordnung der Gruppe G ist |G|=16

Richtig.

> also würde ich mal
> blind raten die Ordnungen der Untergruppen können nur [mm]\le[/mm]
> 16 sein und sind Teiler von 16 also 8,4,2,1.

Die Liste ist trivialerweise nicht ganz vollstaendig.

> Oder muss ich
> das genauer bestimmen ?

Davon gehe ich aus.

>
> für c)
>  Muss ich da die Untergruppe von 3 erzeugen und die
> Elemente von <3> sind dann die Nebenklassen ? Also hier
> 3,9,27,1.

Ich vermute, dass die Aufgabenstellung unvollstaendig ist, denn eine Nebenklasse wird bezueglich einer Untergruppe gebildet und wenn diese nicht gegeben ist, kann man auch keine Nebenklasse angeben. Eventuell sollst Du die Nebenklasse von $3$ fuer alle moeglichen Untergruppen angeben.

>  
> danke im voraus,
>  andreas


Bezug
                
Bezug
Ordnungen und Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 So 23.02.2014
Autor: Infoandi

Tatsache, in Bezug auf die von der Einheit 7 erzeugte Untergruppe. Also wäre es wahrscheinlich nur die Einheit 9. Da diese ja in <7> und in <3> ist.

Zu den möglichen Ordnungen der Untergruppe:
Da habe ich wohl noch die 16 selbst vergessen. Aber wie soll ich das noch genauer angeben ?

danke für deine Antwort.
Andreas

Bezug
                        
Bezug
Ordnungen und Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Mo 24.02.2014
Autor: hippias


> Tatsache, in Bezug auf die von der Einheit 7 erzeugte
> Untergruppe. Also wäre es wahrscheinlich nur die Einheit
> 9. Da diese ja in <7> und in <3> ist.

Nein. Schlag' nocheinmal nach, was eine Nebenklasse von $U$ in $G$ ist.

>  
> Zu den möglichen Ordnungen der Untergruppe:
>  Da habe ich wohl noch die 16 selbst vergessen.

Genau.

> Aber wie
> soll ich das noch genauer angeben ?

Es bleibt die Frage offen, fuer welche Zahlen es aus Deiner Liste tatsaechlich eine Untergruppe gibt, die diese Ordnung hat. Da hilft wohl nur herumprobieren. Wenn mich nicht alles taeuscht, hast Du aber bereits zu jeder Zahl ausser der $8$ eine passende Untergruppe gefunden. Du koenntest weitere zyklische Untergruppen bilden, dann von $2$ Elementen erzeugte Untergruppen betrachten usw. oder versuchen zu ueberlegen, weshalb $G$ keine Untergruppe der Ordnung $8$ besitzt.  

>
> danke für deine Antwort.
>  Andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de