www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Ordnungsrelation
Ordnungsrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsrelation: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:49 Di 24.11.2009
Autor: Yuuichi-san

Aufgabe
Welche eigenschaft muss eine natürliche Zahl erfüllen, deren Teilermenge linear geordnet ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

So:
Wenn ich die Aufgabe richtig verstehe, dann muss ich [mm] n\in\IN [/mm]  so eingrenzen, dass alle Teiler t von n vielfache von kleineren Teilern von n sind und es ein [mm] k\in\IN [/mm] gibt, sodass k*t alle größeren Teiler beschreibt oder?

So jetzt hab ich mir überlegt, dass dies ja auf alle Zahlen zutrifft, welche duch [mm] p^n [/mm] mit [mm] p\in\(P [/mm] und [mm] n\in\IN\cup \{0\} [/mm] , wobei P die Menge aller Primzahlen ist.

Ist das dies der richtige Ansatz? oder bin ich da voll aufm Falschen weg?
mfg Yuu

        
Bezug
Ordnungsrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Di 24.11.2009
Autor: Al-Chwarizmi


> Welche Eigenschaft muss eine natürliche Zahl erfüllen,
> deren Teilermenge linear geordnet ist?

> ......
> ......

> So jetzt hab ich mir überlegt, dass dies ja auf alle
> Zahlen zutrifft, welche duch [mm]p^n[/mm] mit [mm]p\in\(P[/mm] und
> [mm]n\in\IN\cup \{0\}[/mm] , wobei P die Menge aller Primzahlen
> ist.
>  
> Ist das dies der richtige Ansatz?


Ja. Dass eine Zahl n der Form [mm] n=p^k [/mm] eine linear geord-
nete Teilermenge hat, ist leicht zu zeigen.  
Bliebe noch zu zeigen, dass die Teilermenge nicht
linear geordnet ist, wenn n mehr als einen Primteiler
hat.

LG    Al-Chw.

Bezug
                
Bezug
Ordnungsrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 24.11.2009
Autor: Yuuichi-san


>   Ja. Dass eine Zahl n der Form $ [mm] n=p^k [/mm] $ eine linear geord-
>   nete Teilermenge hat, ist leicht zu zeigen.

dürfte kein Problem sein.  

>   Bliebe noch zu zeigen, dass die Teilermenge nicht
>   linear geordnet ist, wenn n mehr als einen Primteiler
>   hat.

Ähm ergibt sich das nicht von selbst, denn wenn es mehr als einen Primteiler gibt, sagen wir mal p ist der eine und k der andere ist ja durch die Def einer Primzahl schon bestimmt dass: [mm] \bruch {p}{k}\not\in\IN [/mm] noch [mm] \bruch{k}{p}\not\in\IN [/mm]
Also ist ja die Zusatz Bedingung für eine lineare Ordnungsrelation nicht erfüllt.
Ist dass schon der fertig Bewis?
mfg Yuu

Bezug
                        
Bezug
Ordnungsrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Di 24.11.2009
Autor: Al-Chwarizmi


> >   Ja. Dass eine Zahl n der Form [mm]n=p^k[/mm] eine linear geord-

>  >   nete Teilermenge hat, ist leicht zu zeigen.
>  
> dürfte kein Problem sein.  
>
> >   Bliebe noch zu zeigen, dass die Teilermenge nicht

>  >   linear geordnet ist, wenn n mehr als einen Primteiler
>  >   hat.
>
> Ähm ergibt sich das nicht von selbst, denn wenn es mehr
> als einen Primteiler gibt, sagen wir mal p ist der eine und
> k der andere ist ja durch die Def einer Primzahl schon
> bestimmt dass: [mm]\bruch {p}{k}\not\in\IN[/mm] noch
> [mm]\bruch{k}{p}\not\in\IN[/mm]
> Also ist ja die Zusatz Bedingung für eine lineare
> Ordnungsrelation nicht erfüllt.
>  Ist dass schon der fertig Bewis?
>  mfg Yuu


Naja, auch dieser Teil des Beweises ist leicht. Es geht
nur darum, alles klar aufzuschreiben. Zuallererst: die
Relation innerhalb der Teilermenge klar definieren,
welche dann zur Ordnungsrelation wird. Und dann
deren genaue Eigenschaften nachweisen, welche dann
zeigen sollen, dass die Ordnung "linear" oder eine
"Totalordnung" ist.

LG


Bezug
                                
Bezug
Ordnungsrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Di 24.11.2009
Autor: Yuuichi-san


> > >   Ja. Dass eine Zahl n der Form [mm]n=p^k[/mm] eine linear geord-

>  >  >   nete Teilermenge hat, ist leicht zu zeigen.
>  >  
> > dürfte kein Problem sein.  
> >
> > >   Bliebe noch zu zeigen, dass die Teilermenge nicht

>  >  >   linear geordnet ist, wenn n mehr als einen
> Primteiler
>  >  >   hat.
> >
> > Ähm ergibt sich das nicht von selbst, denn wenn es mehr
> > als einen Primteiler gibt, sagen wir mal p ist der eine und
> > k der andere ist ja durch die Def einer Primzahl schon
> > bestimmt dass: [mm]\bruch {p}{k}\not\in\IN[/mm] noch
> > [mm]\bruch{k}{p}\not\in\IN[/mm]
> > Also ist ja die Zusatz Bedingung für eine lineare
> > Ordnungsrelation nicht erfüllt.
>  >  Ist dass schon der fertig Bewis?
>  >  mfg Yuu
>  
>
> Naja, auch dieser Teil des Beweises ist leicht. Es geht
>  nur darum, alles klar aufzuschreiben. Zuallererst: die
>  Relation innerhalb der Teilermenge klar definieren,
>  welche dann zur Ordnungsrelation wird. Und dann
>  deren genaue Eigenschaften nachweisen, welche dann
>  zeigen sollen, dass die Ordnung "linear" oder eine
>  "Totalordnung" ist.
>  
> LG
>  

Ok, da wir in der Vorlesung aber schon gezeigt haben, dass auf [mm] \IN [/mm] eine Ordnungsrelation im Bezug auf Teiler gilt, muss ich es ja für die Teilmenge die hier definiert wurde eigentlich nicht mehr zeigen oder?
Ich muss doch jetzt nur noch zeigen, dass sie linear angeordnet ist und dass alle die nicht in der Menge sind nicht linear angeordnet sind oder?
Vielen Dank schon einmal, hab immer so meine Schwierigkeiten herauszufinden was ich genau beweisen muss und was nicht xD
mfg

Bezug
                                        
Bezug
Ordnungsrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Di 24.11.2009
Autor: Al-Chwarizmi


> Ok, da wir in der Vorlesung aber schon gezeigt haben, dass
> auf [mm]\IN[/mm] eine Ordnungsrelation im Bezug auf Teiler gilt,

Etwas genauer:  die Relation   [mm] T(x,y):\gdw [/mm]  x ist Teiler von y

legt eine "Halbordnung" auf [mm] \IN [/mm] fest.

> muss ich es ja für die Teilmenge die hier definiert wurde
> eigentlich nicht mehr zeigen oder?

OK; die Halbordnungseigenschaften übertragen sich
auch auf die auf eine Teilmenge beschränkte Relation.

>  Ich muss doch jetzt nur noch zeigen, dass sie linear
> angeordnet ist und dass alle die nicht in der Menge sind
> nicht linear angeordnet sind oder?

Also betrachte die beiden Fälle:

1.) [mm] n=p^k [/mm]  mit p prim und [mm] k\in\IN [/mm]

---> Teilermenge  $\ [mm] D_1=\{p^{i}\ |\ 0\le i\le k\ \}$ [/mm]

2.) $\ [mm] n=p_1*p_2*r$ [/mm]  mit verschiedenen Primzahlen [mm] p_1, p_2 [/mm] und [mm] r\in\IN [/mm]

---> Teilermenge $\ [mm] D_2=\{1,p_1,p_2,\,.....\,,r,\,.....\,,n\ \}$ [/mm]

und zeige, dass [mm] D_1 [/mm] durch T linear geordnet wird, [mm] D_2 [/mm] aber nicht.

LG     Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de