www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthogonale Matrizen
Orthogonale Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 22.05.2007
Autor: robbonaut

Aufgabe
Sei K ein Körper und A eine quadratische Matrix auf K.

Wieviele A's gibt es, die gleichzeitig obere Dreiecksmatrizen und orthogonale Matrizen sind, gibt es auf K ?


Mich verwundert bei der Frage, dass ich eine Anzahl angeben soll.

Nach meinen Überlegungen, gibt es doch nur eine Matrix, welche das erfüllt, und das ist die Einheitsmatrix. Stimmt das?

Ich habe durch Probieren keine andere Matrix gefunden, die obere Dreiecksmatrix ist, und noch dazu orthogonal.

Vielen Dank für Tipps,
robbonaut

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Di 22.05.2007
Autor: robbonaut

Achso, eine Andere Überlegung von mir war,
dass die Determinante 1 oder -1 sein muss. Kommt man
über die Determinanten vllt. weiter?

Bezug
        
Bezug
Orthogonale Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Di 22.05.2007
Autor: Leopold_Gast

Jede Spalte muß zu den Spalten links von ihr orthogonal sein. So kannst du dich über das Skalarprodukt von Spalte zu Spalte voranarbeiten. Und da jede Spalte auch noch die Länge 1 haben muß, bleiben da nicht mehr viele Möglichkeiten offen. Aber beachte: Außer +1 gibt es auch noch -1!

Bezug
        
Bezug
Orthogonale Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 22.05.2007
Autor: robbonaut

ok, also :

Auf jeden Fall müssen dann auch bei der oberen Dreiecksmatrix die Elemente neben der Diagonale auch Null sein, denn sonst klappt's nicht
mit dem Skalarprodukt der beiden Vektoren, also so etwa

1 0 1    Allerdings: Diese Matrix dann transponiert ist nicht mehr
0 1 0    die Inverse, also gibt es nur zwei Matrizen, die das erfüllen  
0 0 1

quasi

1 0 0
0 1 0
0 0 1

und

-1  0  0
0 -1  0
0  0 -1

?
mfg, robin




Bezug
                
Bezug
Orthogonale Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 22.05.2007
Autor: felixf

Hallo Robin!

> ok, also :
>  
> Auf jeden Fall müssen dann auch bei der oberen
> Dreiecksmatrix die Elemente neben der Diagonale auch Null
> sein, denn sonst klappt's nicht
>  mit dem Skalarprodukt der beiden Vektoren, also so etwa

Genau.

Das kannst du uebrigens recht einfach per Induktion zeigen.

> 1 0 1    Allerdings: Diese Matrix dann transponiert ist
> nicht mehr
>  0 1 0    die Inverse, also gibt es nur zwei Matrizen, die
> das erfüllen  
> 0 0 1
>  
> quasi
>  
> 1 0 0
>  0 1 0
>  0 0 1
>
> und
>
> -1  0  0
>   0 -1  0
>   0  0 -1

Was ist mit [mm] $\pmat{ -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm] etc.? Du kannst jeden Diagonaleintrag frei aus [mm] $\{ 1, -1 \}$ [/mm] waehlen...

LG Felix


Bezug
                        
Bezug
Orthogonale Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Di 22.05.2007
Autor: robbonaut

Ahhh.. danke!!!!!

ich glaub, jetzt bekomm ich alles zusammen.

mfg,
robin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de