www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Orthogonale Polynome
Orthogonale Polynome < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Mi 25.11.2020
Autor: sina10

Hallöchen an alle. Ich beschäftige mich zurzeit mit orthogonalen Polynome und durchforste einige Skripte und Wikipedia-Seiten dazu.


Auf Wikipedia finde ich folgende Definition dazu:


Definition: Wikipedia
_________________

Sei [mm] $\mu$ [/mm] ein Borel-Maß auf [mm] $\mathbb{R}$ [/mm] und betrachten man den Hilbertraum [mm] $L^{2} (\mathbb{R}, [/mm] d [mm] \mu)$ [/mm] der bezüglich [mm] $\mu$ [/mm] quadratintegrierbaren Funtionen mit dem Skalarprodukt $(f, g ) = [mm] \int\limits_{\mathbb{R}} \overline{f(x)} [/mm] g(x) d [mm] \mu(x)$. [/mm]

Weiter sei [mm] $\int_{\mathbb{R}} \vert [/mm] x [mm] \vert^{n} [/mm] d [mm] \mu(x) [/mm] < [mm] \infty$ [/mm] für alle $n [mm] \in \mathbb{N}$. [/mm] Das ist zum Beispiel der Fall, wenn das Maß einen kompakten Träger besitzt.
Insbesondere ist das Maß endlich und man kann o.B.d.A. [mm] $\mu(\mathbb{R}) [/mm] = 1$ fordern.

Im einfachsten Fall ist das Maß durch eine nicht-negative Gewichtsfunktion [mm] $\omgea(x)$ [/mm] gegeben: $d [mm] \mu(x) [/mm] = [mm] \omega(x) [/mm] dx$.

Eine Folge von Polynomen [mm] $P_{n}, [/mm] n [mm] \in \mathbb{N}_{0},$ [/mm] heißt eine Folge orthogonaler Polynome, falls [mm] $P_{n}(x)$ [/mm] Grad $n$ hat und verschiedene Polynome paarweise orthogonal sind:

[mm] $(P_{m}, P_{n}) [/mm] = 0,$ $m [mm] \neq [/mm] n$.



Ich habe dazu ein paar Fragen:

1.) Was meint man mit $d [mm] \mu$? [/mm] Wofür steht das Symbol?

2) Was bedeutet dann genau [mm] $L^{2} (\mathbb{R}, [/mm] d [mm] \mu)$ [/mm] ?

Ich kann mir schon denken, dass man damit einen Vektorraum meint, dessen Elemente reelle Funktionen $f: [mm] \mathbb{R} \rightarrow \mathbb{R}$ [/mm] sind, die mindestens 2x integrierbar sind. Passt das so?
Aber welche Rolle soll $d [mm] \mu$ [/mm] da spielen?

3) Wie genau soll ich $(f, g ) = [mm] \int\limits_{\mathbb{R}} \overline{f(x)} [/mm] g(x) d [mm] \mu(x)$ [/mm] verstehen? Was ist denn $d [mm] \mu(x)$? [/mm]

4) Benutzt man, wenn man von orthogonalen Polynomen spricht, immer das obige Skalarprodukt? Oder orthogonalisert man manchmal Polynome bezüglich eines ganz anderen Skalarproduktes?

Das war's :-) Ich würde mich auf eine Antwort sehr freuen!

        
Bezug
Orthogonale Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 26.11.2020
Autor: fred97

Hallo Sina,

ich denke es ist nicht möglich,  all Deine Fragen zu beantworten, denn Dir fehlen viele , viele Grundlagen.

Mache Dich also zunächst mit Maß - und Integrationstheorie vertraut.

Danach sollte Dir klar sein, was $ d [mm] \mu [/mm] $,  $ [mm] L^{2} (\mathbb{R}, [/mm] d [mm] \mu) [/mm] $ und $ d [mm] \mu(x) [/mm] $, etc... bedeuten.

Viel Vergnügen

FRED

Bezug
        
Bezug
Orthogonale Polynome: Literaturhinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Do 26.11.2020
Autor: statler

Hallo Sina,

Freds Antwort lag mir so ähnlich auch auf der Zunge, aber da das nicht wirklich mein Fachgebiet ist, habe ich sie für mich behalten :) Was ich jetzt aber doch ergänzen möchte, ist 1. der Hinweis auf einschlägige Bücher z. B. von Halmos oder Bauer und 2. daß du dann hier natürlich jede Menge Fragen zu den dortigen Sätzen und Aufgaben stellen kannst (und dann auch qualifizierte Antworten kriegst). Wiki ist nicht ansatzweise ausreichend!

Viel Vergnügen auch von mir
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de