www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Orthogonale Trajektorien
Orthogonale Trajektorien < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Trajektorien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Di 06.01.2009
Autor: bluebird

Aufgabe
Bestimme die orth. Traj. der Bernoulli-Lemniskate:
[mm](x^2+y^2)^2+2a^2(x^2-y^2)=0[/mm]

Die geg. Gleichung ist meine Kurvenschar mit Parameter (1). Daraus will/muss ich die parameterfreie Gleichung (2) ausrechnen, d.h. ich muss partiell differenzieren, dabei komme ich auf:
[mm]2(x^2+y^2)+4a(2x-2yy')=0[/mm]
Das löse ich nach a auf:
[mm]a=-\bruch{(x^2+y^2)}{4(x-yy')}[/mm]
Wenn ich das in (1) einsetze, um (2) zu erhalten bekomme ich eine Gleichung die mir doch etwas aufwendig aussieht - sind meine Berechnungen soweit korrekt?

        
Bezug
Orthogonale Trajektorien: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 06.01.2009
Autor: MathePower

Hallo bluebird,

> Bestimme die orth. Traj. der Bernoulli-Lemniskate:
>  [mm](x^2+y^2)^2+2a^2(x^2-y^2)=0[/mm]
>  Die geg. Gleichung ist meine Kurvenschar mit Parameter
> (1). Daraus will/muss ich die parameterfreie Gleichung (2)
> ausrechnen, d.h. ich muss partiell differenzieren, dabei
> komme ich auf:
>  [mm]2(x^2+y^2)+4a(2x-2yy')=0[/mm]
>  Das löse ich nach a auf:
>  [mm]a=-\bruch{(x^2+y^2)}{4(x-yy')}[/mm]
>  Wenn ich das in (1) einsetze, um (2) zu erhalten bekomme
> ich eine Gleichung die mir doch etwas aufwendig aussieht -
> sind meine Berechnungen soweit korrekt?


Nach meinem Kenntnisstand mußt Du aus der Gleichung

[mm]F\left(x,y,a\right)=(x^2+y^2)^2+2a^2(x^2-y^2)=0[/mm]

den Parameter a eliminieren, und

in die Gleichung der orthogonalen Trajektorien

[mm]F_{y}-F_{x}y'=0[/mm]

,wobei [mm]F_{x}, F_{y}[/mm] die partiellen Ableitungen von F nach x bzw. y sind,

einsetzen.


Gruß
MathePower

Bezug
                
Bezug
Orthogonale Trajektorien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 06.01.2009
Autor: bluebird

Hallo MathePower,

> Nach meinem Kenntnisstand mußt Du aus der Gleichung
>  
> [mm]F\left(x,y,a\right)=(x^2+y^2)^2+2a^2(x^2-y^2)=0[/mm]
>  
> den Parameter a eliminieren, und
>  
> in die Gleichung der orthogonalen Trajektorien
>  
> [mm]F_{y}-F_{x}y'=0[/mm]
>  
> ,wobei [mm]F_{x}, F_{y}[/mm] die partiellen Ableitungen von F nach x
> bzw. y sind,
>  
> einsetzen.

Das ist mir schon klar, indem ich partiell differenziere, nach a auflöse, dieses in die Ausgangsgleichung (1) einsetze und somit a eliminiere mache ich genau das selbe. Daraus erhalte ich dann (2) und daraus dann wieder meine orthogonalen Trajektorien.

Mir geht es allerdings viel mehr darum, ob meine bis jetzt gemachten Berechnungen soweit stimmen, vor allem was das Ergebnis des partiellen Differenzierens anbelangt, bin ich mir sehr unsicher, ob das überhaupt stimmt.

Bezug
                        
Bezug
Orthogonale Trajektorien: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Di 06.01.2009
Autor: MathePower

Hallo bluebird,

> Hallo MathePower,
>  
> > Nach meinem Kenntnisstand mußt Du aus der Gleichung
>  >  
> > [mm]F\left(x,y,a\right)=(x^2+y^2)^2+2a^2(x^2-y^2)=0[/mm]
>  >  
> > den Parameter a eliminieren, und
>  >  
> > in die Gleichung der orthogonalen Trajektorien
>  >  
> > [mm]F_{y}-F_{x}y'=0[/mm]
>  >  
> > ,wobei [mm]F_{x}, F_{y}[/mm] die partiellen Ableitungen von F nach x
> > bzw. y sind,
>  >  
> > einsetzen.
>  
> Das ist mir schon klar, indem ich partiell differenziere,
> nach a auflöse, dieses in die Ausgangsgleichung (1)
> einsetze und somit a eliminiere mache ich genau das selbe.
> Daraus erhalte ich dann (2) und daraus dann wieder meine
> orthogonalen Trajektorien.
>  
> Mir geht es allerdings viel mehr darum, ob meine bis jetzt
> gemachten Berechnungen soweit stimmen, vor allem was das
> Ergebnis des partiellen Differenzierens anbelangt, bin ich
> mir sehr unsicher, ob das überhaupt stimmt.


Ich kann Deine partiellen Differentiation nicht nachvollziehen.

[mm] 2(x^2+y^2)+4a(2x-2yy')=0[/mm]

Ok, Du hast hier implizit abgeleitet, dann müßte aber da stehen:

[mm]2*\left(x^{2}+y^{2}\right)*\left(2x+2yy'\right)+4a^{2}*\left(2x-2yy')=0[/mm]


Gruß
MathePower

Bezug
                                
Bezug
Orthogonale Trajektorien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mi 07.01.2009
Autor: bluebird

Hallo MathePower,

> Ich kann Deine partiellen Differentiation nicht
> nachvollziehen.
>  
> [mm]2(x^2+y^2)+4a(2x-2yy')=0[/mm]

die war falsch, wie ich von Anfang an vermutet habe. Habe nun einfach die Angabe ausmultipliziert (so schleichen sich meiner Meinung nach am wenigsten Fehler ein):
[mm]x^4+2x^2*y^2+y^4+2a^2*x^2-2a^2*y^2=0[/mm]
Das partiell abgeleitet und gekürzt komme ich auf:
[mm]x^3+x*y^2+x^2*y*y'+y^3y'+a^2*x-a^2*y*y'[/mm]
Wenn ich damit weiterrechne, komme ich allerdings auf einen riesigen Bruch, wo sich auch nichts kürzt, d.h. ich denke das auch das wieder falsch ist!?

> [mm]2*\left(x^{2}+y^{2}\right)*\left(2x+2yy'\right)+4a^{2}*\left(2x-2yy')=0[/mm]

Bei deiner Ableitung kommt etwas anderes heraus, als bei meiner, aber auch damit wird der Bruch riesig und es kürzt sich nichts.

Welche partielle Ableitung ist nun richtig und wie funktioniert sie "Schritt für Schritt", wenn meine nicht stimmt?

Bezug
                                        
Bezug
Orthogonale Trajektorien: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 07.01.2009
Autor: MathePower

Hallo bluebird,

> Hallo MathePower,
>  
> > Ich kann Deine partiellen Differentiation nicht
> > nachvollziehen.
>  >  
> > [mm]2(x^2+y^2)+4a(2x-2yy')=0[/mm]
>  
> die war falsch, wie ich von Anfang an vermutet habe. Habe
> nun einfach die Angabe ausmultipliziert (so schleichen sich
> meiner Meinung nach am wenigsten Fehler ein):
>  [mm]x^4+2x^2*y^2+y^4+2a^2*x^2-2a^2*y^2=0[/mm]
>  Das partiell abgeleitet und gekürzt komme ich auf:
>  [mm]x^3+x*y^2+x^2*y*y'+y^3y'+a^2*x-a^2*y*y'[/mm]
>  Wenn ich damit weiterrechne, komme ich allerdings auf
> einen riesigen Bruch, wo sich auch nichts kürzt, d.h. ich
> denke das auch das wieder falsch ist!?
>  
> >
> [mm]2*\left(x^{2}+y^{2}\right)*\left(2x+2yy'\right)+4a^{2}*\left(2x-2yy')=0[/mm]
>  
> Bei deiner Ableitung kommt etwas anderes heraus, als bei
> meiner, aber auch damit wird der Bruch riesig und es kürzt
> sich nichts.
>  
> Welche partielle Ableitung ist nun richtig und wie
> funktioniert sie "Schritt für Schritt", wenn meine nicht
> stimmt?


Deine natürlich.

Ich habe hier einen Faktor 2 zuviel eingebaut:

[mm]2*\left(x^{2}+y^{2}\right)*\left(2x+2yy'\right)+\blue{2}a^{2}*\left(2x-2yy')=0[/mm]

Dann kann man den Faktor 4 herausziehen und es verbleibt:

[mm]\left(x^{2}+y^{2}\right)*\left(x+yy'\right)+a^{2}*\left(x-yy')=0[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de