www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Orthogonalisieren
Orthogonalisieren < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 So 17.07.2011
Autor: paula_88

Aufgabe
Zu erstellen ist eine Orthogonalbasis aus Eigenvektoren von A.
[mm] A=\pmat{ 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 } [/mm]

Hallo an alle,
ich habe noch nie eine Orthogonalbasis erstellt, bin mir also nicht ganz sicher, ob meine Lösung richtig ist, da ich es einfach analog zu einem Wikipedia-Beispiel versucht habe.

Folgendes habe ich gerechnet:
Die Eigenwerte der Matrix sind 0,4,4.
Für den Eigenraum des EW 0 habe ich den Eigenvektor [mm] b_{1}=\vektor{1 \\ 0 \\ -1}. [/mm]
Für den Eigenraum zum doppelten EW 4 habe ich das Gleichungssystem -2x-2z=0 heraus und somit die Eigenvektoren [mm] b_{2}=\vektor{1 \\ 0 \\ -1} [/mm] und [mm] b_{3}=\vektor{0 \\ 1 \\ 0}. [/mm] Hier bin ich mir aber nicht so sicher, könnte das bitte einer prüfen? :-)

Nun habe ich meinen ersten Vektor [mm] b_{1} [/mm] als [mm] v_{1} [/mm] definiert und [mm] v_{2} [/mm] wie folgt berechnet:

[mm] v_{2}=v_{1}-\bruch{}{}\cdotv_{1}=\vektor{0 \\ 0 \\ 0} [/mm]

analog zur Definition von Wikipedia habe ich [mm] v_{3}=\vektor{0 \\ 1 \\ 0}. [/mm]

Sind diese berechnungen erstmal prinzipiell richtig oder habe ich was vergessen?
Wie schreibe ich die Orthonormalbasis dann auf, als 3x3 Matrix oder als Lösungsmenge von 3 Vektoren?

Viele Grüße, Paula

        
Bezug
Orthogonalisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 So 17.07.2011
Autor: wieschoo

Hi,
> Zu erstellen ist eine Orthogonalbasis aus Eigenvektoren von
> A.
>  [mm]A=\pmat{ 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 }[/mm]
>  Hallo an
> alle,
>  ich habe noch nie eine Orthogonalbasis erstellt, bin mir
> also nicht ganz sicher, ob meine Lösung richtig ist, da
> ich es einfach analog zu einem Wikipedia-Beispiel versucht
> habe.
>  
> Folgendes habe ich gerechnet:
>  Die Eigenwerte der Matrix sind 0,4,4.

[ok]

>  Für den Eigenraum des EW 0 habe ich den Eigenvektor
> [mm]b_{1}=\vektor{1 \\ 0 \\ -1}.[/mm]

[ok]

>  Für den Eigenraum zum
> doppelten EW 4 habe ich das Gleichungssystem -2x-2z=0

[notok]

> heraus und somit die Eigenvektoren [mm]b_{2}=\vektor{1 \\ 0 \\ -1}[/mm] [notok]
> und [mm]b_{3}=\vektor{0 \\ 1 \\ 0}.[/mm] [ok] Hier bin ich mir aber nicht
> so sicher, könnte das bitte einer prüfen? :-)

Du hast doch die Matrix:
[mm] \left[ \begin {array}{ccc} 2&0&-2\\ \noalign{\medskip}0&0&0 \\ \noalign{\medskip}-2&0&2\end {array} \right] \rightsquigarrow\left[ \begin {array}{ccc} 1&0&-1\\ \noalign{\medskip}0&0&0 \\ \noalign{\medskip}0&0&0\end {array} \right] [/mm]

>  
> Nun habe ich meinen ersten Vektor [mm]b_{1}[/mm] als [mm]v_{1}[/mm] definiert
> und [mm]v_{2}[/mm] wie folgt berechnet:
>  
> [mm]v_{2}=v_{1}-\bruch{}{}\cdotv_{1}=\vektor{0 \\ 0 \\ 0}[/mm]

Das darf aber kein Basisvektor sein!

>  
> analog zur Definition von Wikipedia habe ich
> [mm]v_{3}=\vektor{0 \\ 1 \\ 0}.[/mm]
>  
> Sind diese berechnungen erstmal prinzipiell richtig oder
> habe ich was vergessen?
> Wie schreibe ich die Orthonormalbasis dann auf, als 3x3
> Matrix oder als Lösungsmenge von 3 Vektoren?

einfach [mm] $b_1=\ldots,b_2=\ldots,b_3=\ldots$ [/mm]

>  
> Viele Grüße, Paula


Bezug
                
Bezug
Orthogonalisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 17.07.2011
Autor: paula_88

Hey,
das habe ich jetzt erst gesehen, dass ich mich beim Eigenraum vom EW 4 vertan habe.
Ich habe nochmal nachgerechnet und folgende Eigenvektoren herausbekommen:
[mm] b_{1}=\vektor{1 \\ 0 \\ -1} [/mm]
[mm] b_{2}=\vektor{1 \\ 0 \\ 1} [/mm]
[mm] b_{3}=\vektor{0 \\ 1 \\ 0} [/mm]

und daraufhin habe ich für die Orthonormalbasis folgende Vektoren errechnet:
[mm] v_{1}=\vektor{1 \\ 0 \\ -1} [/mm]
[mm] v_{2}=\vektor{1 \\ 0 \\ 1} [/mm]
[mm] v_{3}=\vektor{0 \\ 1 \\ 0} [/mm]

Kann das so hinkommen? Und ist das schon das ganze Prinzip des orthogonalisierens? Die Eigenvektoren berechnen und dann nur in die Gram-Schmidt "Formel" quasi einsetzen?

Viele Grüße, Paula


Bezug
                        
Bezug
Orthogonalisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 So 17.07.2011
Autor: wieschoo


> Hey,
>  das habe ich jetzt erst gesehen, dass ich mich beim
> Eigenraum vom EW 4 vertan habe.
>  Ich habe nochmal nachgerechnet und folgende Eigenvektoren
> herausbekommen:
>  [mm]b_{1}=\vektor{1 \\ 0 \\ -1}[/mm]
>  [mm]b_{2}=\vektor{1 \\ 0 \\ 1}[/mm]
>  
> [mm]b_{3}=\vektor{0 \\ 1 \\ 0}[/mm]
>

[ok][ok][ok]

> und daraufhin habe ich für die Orthonormalbasis folgende
> Vektoren errechnet:
>  [mm]v_{1}=\vektor{1 \\ 0 \\ -1}[/mm]
>  [mm]v_{2}=\vektor{1 \\ 0 \\ 1}[/mm]
>  
> [mm]v_{3}=\vektor{0 \\ 1 \\ 0}[/mm]
>

[ok][ok][ok]

> Kann das so hinkommen? Und ist das schon das ganze Prinzip
> des orthogonalisierens? Die Eigenvektoren berechnen und
> dann nur in die Gram-Schmidt "Formel" quasi einsetzen?
>  
> Viele Grüße, Paula
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de