www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Orthogonalität- Gerade u.Ebene
Orthogonalität- Gerade u.Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität- Gerade u.Ebene: Stimmt diese Lösung?
Status: (Frage) beantwortet Status 
Datum: 17:04 So 15.10.2006
Autor: DanielBusiness

Aufgabe
Eine Gerade g durch A (2/3/-1) ist orthogonal zur Ebene E. Bestimmen Sie eine  Gleichung von g.

E: [mm] 5x_1 -x_2-3x_3=5 [/mm]

Meine Lösung lautet g: [mm] \vec x[/mm]  = [mm]\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}[/mm]+t [mm]\begin{pmatrix} 15 \\ -3 \\ -9\end{pmatrix}[/mm]

Eine Regel besagt ja dass eine Gerade g und eine Ebene E zueinander orthogonal sind, wenn Richtungsvektor und Normalenvektor Vielfache voneinander sind. Bin mir aber nicht sicher ob meine Lösung korrekt ist. Würde mich über eine Antwort von euch freuen

Gruß Daniel

PS:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonalität- Gerade u.Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 So 15.10.2006
Autor: Event_Horizon

So ganz stimmt das nicht.

Schau dir mal die Normalengleichung einer Ebene an:

[mm] $(\vec [/mm] x - [mm] \vec a)*\vec [/mm] n=0$

[mm] \vec{a} [/mm] ist der Aufpunktvektorm, und [mm] \vec{n} [/mm] ist der Normalenvektor. [mm] \vec{x} [/mm] ist einfach [mm] \vektor{x\\y\\z} [/mm]

Wenn du das einsetzt und ausrechnest, erhälst du sowas:

[mm] $(\vec [/mm] x - [mm] \vec a)*\vec [/mm] n=0$

[mm] $\vec x*\vec [/mm] n - [mm] \vec a*\vec [/mm] n=0$

[mm] $xn_1+yn_2+zn_3-(a_1n_1+a_2n_2+a_3n_3)=0$ [/mm]

Vergleiche das Ding mal mit deiner Ebenengleichung! Die Koeffizienten von x,y,z ergeben direkt den  Normalenvektor, also [mm] \vektor{5\\-1\\-3} [/mm]

Also, eigentlich muß da nix gerechnet werden, die Lösung läßt sich sofort hinschreiben.



Bezug
                
Bezug
Orthogonalität- Gerade u.Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 So 15.10.2006
Autor: DanielBusiness

Wie lautet dann die korrekte Lösung?

Bezug
                        
Bezug
Orthogonalität- Gerade u.Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 15.10.2006
Autor: Event_Horizon

Nun, der von mir angegebene Vektor ist einfach der Richtungsvektor der Grade. Dein Aufpunktvektor ist richtig, nur dein Richtungsvektor ist falsch. Nimm also meinen.

Bezug
                                
Bezug
Orthogonalität- Gerade u.Ebene: Einspruch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 So 15.10.2006
Autor: ardik

Hi Ihr,

natürlich ist Daniels Richtungsvektor auch ok!

Alternativ könnte ich auch noch [mm] $\vektor{-70\pi e^2\\14\pi e^2 \\42\pi e^2 }$ [/mm] anbieten ;-)

Aber es ist freilich völlig unnötig, den Normalenvektor noch mit 3 (oder mit [mm] $-14\pi e^2$) [/mm] zu mulitplizieren, um einen geeigneten Richtungsvektor zu erhalten.

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de